早教吧作业答案频道 -->数学-->
设f(n)=1+1/2+1/3+...+1/n,使等式f(1)+f(2)+f(3)+...+f(n)+n=g(n)f(n)成立的g(n)是?
题目详情
设f(n)=1+1/2+1/3+...+1/n,使等式f(1)+f(2)+f(3)+...+f(n)+n=g(n)f(n)成立的g(n)是?
▼优质解答
答案和解析
当n=1时
f(1)+1=g(1)f(1)
代入f(1)=1得
1+1=g(1)
g(1)=2
当n=2时
f(1)+f(2)+2=g(2)f(2)
代入f(1)=1,f(2)=3/2得
1+3/2+2=g(2)*3/2
g(2)=3
当n=3时
f(1)+f(2)+f(3)+3=g(3)f(3)
代入f(1)=1,f(2)=3/2,f(3)=11/6得
1+3/2+11/6+3=g(3)*11/6
g(3)=4
因此可猜测g(n)=n+1,下面用数学归纳法证明这个猜测:
当n=1时之前已证实g(n)=n+1成立
假设g(k)=k+1成立,只需证明g(k+1)=k+2成立即可
f(1)+f(2)+f(3)+...+f(k)+k=g(k)f(k)
f(1)+f(2)+f(3)+...+f(k+1)+k+1=g(k+1)f(k+1)
两式想减得
f(k+1)+1=g(k+1)f(k+1)-g(k)f(k)
f(k+1)g(k+1)=f(k+1)+1+g(k)f(k)
=f(k+1)+1+(k+1)f(k)
代入f(k+1)=f(k)+1/(k+1)得
(f(k)+1/(k+1))g(k+1)=f(k)+1/(k+1)+1+(k+1)f(k)
((k+1)f(k)+1)g(k+1)=(k+1)f(k)+1+k+1+(k+1)²f(k)
=(k+1)(k+2)f(k)+k+2
=(k+2)((k+1)f(k)+1)
显然(k+1)f(k)+1>0
所以g(k+1)=k+2,得证
所以由数学归纳法可得g(n)=n+1
f(1)+1=g(1)f(1)
代入f(1)=1得
1+1=g(1)
g(1)=2
当n=2时
f(1)+f(2)+2=g(2)f(2)
代入f(1)=1,f(2)=3/2得
1+3/2+2=g(2)*3/2
g(2)=3
当n=3时
f(1)+f(2)+f(3)+3=g(3)f(3)
代入f(1)=1,f(2)=3/2,f(3)=11/6得
1+3/2+11/6+3=g(3)*11/6
g(3)=4
因此可猜测g(n)=n+1,下面用数学归纳法证明这个猜测:
当n=1时之前已证实g(n)=n+1成立
假设g(k)=k+1成立,只需证明g(k+1)=k+2成立即可
f(1)+f(2)+f(3)+...+f(k)+k=g(k)f(k)
f(1)+f(2)+f(3)+...+f(k+1)+k+1=g(k+1)f(k+1)
两式想减得
f(k+1)+1=g(k+1)f(k+1)-g(k)f(k)
f(k+1)g(k+1)=f(k+1)+1+g(k)f(k)
=f(k+1)+1+(k+1)f(k)
代入f(k+1)=f(k)+1/(k+1)得
(f(k)+1/(k+1))g(k+1)=f(k)+1/(k+1)+1+(k+1)f(k)
((k+1)f(k)+1)g(k+1)=(k+1)f(k)+1+k+1+(k+1)²f(k)
=(k+1)(k+2)f(k)+k+2
=(k+2)((k+1)f(k)+1)
显然(k+1)f(k)+1>0
所以g(k+1)=k+2,得证
所以由数学归纳法可得g(n)=n+1
看了 设f(n)=1+1/2+1/...的网友还看了以下:
有金银合金530g,体积35立方厘米,求金银各有多少克?设金的质量为m,银的质量为m2,依题意,得 2020-04-07 …
关于高等数学的问题就是有个公式d(f/g)=(gdf-fdg)/g^2如果把f换成1的话,那么d( 2020-06-10 …
设an=1+1/2+1/3+.1/n,是否存在关于n的正式g(n),使得等式a1+a2+a3+.a 2020-06-12 …
正整数可以分为两个互不相交的正整数子集:{f(1),f(2),f(3)...f(n)...};{g 2020-07-17 …
正整数可以分为两个互不相交的正整数子集:{f(1),f(2),f(3)...f(n)...};{g 2020-07-20 …
已知函数f(x)=(x^1/3-x^-1/3)/5,g(x)=(x^1/3+x1/3)/5.分别计 2020-07-21 …
若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g 2020-07-31 …
因式定理2题!1.如果f(x),g(x)及h(x)是三个函数,其中f(x)=2x^5-8x^2+1 2020-08-02 …
第1式:向量OP=λ向量OA+μ向量OB(λ+μ=1)第2式:向量OP=λ1向量OA+λ2向量OB+ 2020-10-31 …
急!初一初二四本数学书笔记!整理,求人整理!高悬赏!要详细!1.数,2式,3方程,方程组及应用4不等 2020-11-21 …