早教吧作业答案频道 -->数学-->
已知数列1/(1*2),1/(2*3),1/(3*4),...,1/,...,猜想Sn的表达式,并证明(归纳法)
题目详情
已知数列1/(1*2),1/(2*3),1/(3*4),...,1/,...,猜想Sn的表达式,并证明(归纳法)
▼优质解答
答案和解析
猜想:Sn=n/(n+1)
证:
n=1时,S1=1/(1×2)=1/2=1/(1+1),猜想的表达式成立.
假设当n=k(k∈N,且k≥1)时,表达式成立,即Sk=k/(k+1),则当n=k+1时,
S(k+1)=1/(1×2)+1/(2×3)+...+1/[k(k+1)]+1/[(k+1)(k+2)]
=Sk+1/[(k+1)(k+2)]
=k/(k+1)+1/[(k+1)(k+2)]
=[k(k+2)+1]/[(k+1)(k+2)]
=(k²+2k+1)/[(k+1)(k+2)]
=(k+1)²/[(k+1)(k+2)]
=(k+1)/(k+2)
=(k+1)/[(k+1)+1]
表达式同样成立.
综上,得Sn的表达式为Sn=n/(n+1).
证:
n=1时,S1=1/(1×2)=1/2=1/(1+1),猜想的表达式成立.
假设当n=k(k∈N,且k≥1)时,表达式成立,即Sk=k/(k+1),则当n=k+1时,
S(k+1)=1/(1×2)+1/(2×3)+...+1/[k(k+1)]+1/[(k+1)(k+2)]
=Sk+1/[(k+1)(k+2)]
=k/(k+1)+1/[(k+1)(k+2)]
=[k(k+2)+1]/[(k+1)(k+2)]
=(k²+2k+1)/[(k+1)(k+2)]
=(k+1)²/[(k+1)(k+2)]
=(k+1)/(k+2)
=(k+1)/[(k+1)+1]
表达式同样成立.
综上,得Sn的表达式为Sn=n/(n+1).
看了 已知数列1/(1*2),1/...的网友还看了以下:
列综合算式或方程计算 1.0.6的一半除3.4与5.8的差,商是多少?灵活计算 (1)1/2÷1/ 2020-05-16 …
下列是水体污染过程中的一系列现象,(1)溶解氧下降(2)鱼类难以生存(3)水中有机物浓度增加(4) 2020-05-17 …
1.求数列11,103,1005,10007.前n项和2.求数列1/1.5,1/3.7,1/5.9 2020-06-12 …
下面的数列中,那些是等差数列?若是,请指明公差,若不是,则说明理由(1)6,10,14,18,22 2020-06-12 …
limx→∞(x^4+3x-1)/(3x^4+4x^2+1)对分式(x^4+3x-1)/(3x^4 2020-06-27 …
1,3,4,8,16,()A.26B.24C.32D.16两种答案B和C选c:1+3=41+3+4 2020-07-16 …
等比数列的化简过程:aq^2+aq^3+aq^4=64(1/aq^2+1/aq^3+1/ap^4) 2020-07-17 …
把3.104、3.•10•4、3.1•0•4、3.10•4.按从小到大的顺序排列是:3.104<3 2020-07-18 …
写出下列函数中自变量的取值范围:(1)y=2x-3;(2)y=-2x²+1;(3)y=3/(1-x 2020-07-25 …
虚数化简1/4*(-4+4*i*3^(1/2))^(1/3)+1/(-4+4*i*3^(1/2)) 2020-07-30 …