早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•盐都区二模)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是圆上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请画出图形,并说明理

题目详情
(2014•盐都区二模)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是圆上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请画出图形,并说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.
▼优质解答
答案和解析
(1)当点P是
BC
的中点时,DP是⊙O的切线.如图:
理由如下:
∵AB=AC,
AB
=
AC

又∵
PB
=
PC

PBA
=
PCA

∴PA是⊙O的直径,
PB
=
PC

∴∠1=∠2,
又AB=AC,
∴PA⊥BC,
又∵DP∥BC,
∴DP⊥PA,
∴DP是⊙O的切线.

(2)连接OB,设PA交BC于点E.
由垂径定理,得BE=
1
2
BC=6,
在Rt△ABE中,由勾股定理,得:
AE=
AB2−BE2
=
102−62
=8,
设⊙O的半径为r,则OE=8-r,
在Rt△OBE中,由勾股定理,得:
r2=62+(8-r)2
解得r=
25
4

∵DP∥BC,∴∠ABE=∠D,
又∵∠1=∠1,
∴△ABE∽△ADP,
BE
DP
=
AE
AP
,即
6
DP
=
8
25
4

解得:DP=
75
8
看了 (2014•盐都区二模)如图...的网友还看了以下: