早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1

题目详情
如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,…,如此继续,得到一系列点P1,P2,P3,…,Pn.若Pn与P重合,则n的最小值是(  )

A.5
B.6
C.7
D.8
▼优质解答
答案和解析
作图可得:设两直线交点为O,
根据对称性可得:作出的一系列点P1,P2,P3,…,Pn都在以O为圆心,OP为半径的圆上,
∵∠α=60°,
∴每相邻两点间的角度是60°;
故若Pn与P重合,
则n的最小值是6.
故选B