早教吧 育儿知识 作业答案 考试题库 百科 知识分享

下列命题是真命题的是()A.命题“∀x>0,使得x2-2x+3≥0”的否定为“∃x>0,使得x2-2x+3<0”B.“0<ab<1”是“b<”的充分不必要条件C.若,满足•=0,则=或=D.“若a+b+c=3,则a2+b2+c2≥

题目详情
下列命题是真命题的是( )
A.命题“∀x>0,使得x2-2x+3≥0”的否定为“∃x>0,使得x2-2x+3<0”
B.“0<ab<1”是“b<”的充分不必要条件
C.若满足=0,则==
D.“若a+b+c=3,则a2+b2+c2≥3”的否命题为“若a+b+c≠3,则a2+b2+c2≥3”
▼优质解答
答案和解析
含有量词的命题的否定,要改量词并且否定后面的结论,故A为真命题;根据充要条件的定义,B中的两个条件是既不充分也不必要条件,故B为假命题;根据向量数量积的定义,可得C是假命题;根据原命题与否命题的关系,得D是假命题.
【解析】
对于A,命题“∀x>0,使得x2-2x+3≥0”是含有量词“任意”的命题,
因此将其否定,只需改量词为“存在”并且否定结论即可.
故原命题的否定为“∃x>0,使得x2-2x+3<0”,得A为真命题.
对于B,条件p:“0<ab<1”不能推出条件q:“b<”,
故p不是q充分条件,也不是充分不必要条件,故B不正确.
对于C,向量满足=0,可能互相垂直的非零向量,
不一定有“=0或=0”成立,故C是假命题;
对于D,命题“若p,则q”的否命题是“若非p,则非q”
由此可得“若a+b+c=3,则a2+b2+c2≥3”的否命题为“若a+b+c≠3,则a2+b2+c2<3”,故D为假命题.
故选:A