早教吧作业答案频道 -->其他-->
如图,△ABC的内切圆I分别切BC、AC于点M、N,点E、F分别为边AB、AC的中点,D是直线EF与BI的交点.证明:M、N、D三点共线.
题目详情
如图,△ABC的内切圆I分别切BC、AC于点M、N,点E、F分别为边AB、AC的中点,D是直线EF与BI的交点.证明:M、N、D三点共线.
▼优质解答
答案和解析
证明:连接AD,IA,IC,IM,IN,连结MD交AC于G,连结IG,如图,
∵点E、F分别为边AB、AC的中点,
∴EF∥BC,
∴∠2=∠3,
∵⊙I为△ABC的内切圆,
∴∠1=∠2,
∴∠1=∠3,
∴EB=ED,
∴AE=BE=ED,
∴△ABD为直角三角形,
∴∠ADB=90°,
∵IM⊥BC,
而∠1=∠2,
∴Rt△BAD∽Rt△BIM,
∴∠ACB,
∴∠DMB=90°+∠ACB,
∵∠DMB=∠BMI+∠4=90°+∠4,
∴∠4=∠ACB,
∵⊙I为△ABC的内切圆,
∴∠5=∠ICM=∠ACB,
∴∠4=∠5,
∴I、M、C、G四点共圆,
∵∠IMC=90°,
∴∠IGC=90°,
∴IG⊥AC,
∴N点与G点重合,
∴M、N、D三点共线.
∵点E、F分别为边AB、AC的中点,
∴EF∥BC,
∴∠2=∠3,
∵⊙I为△ABC的内切圆,
∴∠1=∠2,
∴∠1=∠3,
∴EB=ED,
∴AE=BE=ED,
∴△ABD为直角三角形,
∴∠ADB=90°,
∵IM⊥BC,
而∠1=∠2,
∴Rt△BAD∽Rt△BIM,
∴∠ACB,
∴∠DMB=90°+∠ACB,
∵∠DMB=∠BMI+∠4=90°+∠4,
∴∠4=∠ACB,
∵⊙I为△ABC的内切圆,
∴∠5=∠ICM=∠ACB,
∴∠4=∠5,
∴I、M、C、G四点共圆,
∵∠IMC=90°,
∴∠IGC=90°,
∴IG⊥AC,
∴N点与G点重合,
∴M、N、D三点共线.
看了 如图,△ABC的内切圆I分别...的网友还看了以下:
选出与所给单词括号部分的读音相同的一项.1:cr(y).A:tr(y);B:cit(y);C:(y 2020-05-13 …
把单词的括号部分的音标(快快快急急急)()1.A.bit(i)B.dish(i)C.like(i) 2020-05-14 …
1.设有变量定义inti,j;与表达式i==0&&j==0等价的表达式是:()(A)i==j(B) 2020-05-14 …
MATLAB设计Jacobi迭代法运行错误,设计函数:function [x,k]=jacobi_ 2020-05-16 …
A.A—B—C—H—I—K;A—B—C—H—J—K;A—B—C—D—E—F—GB.A—B—C—H—I 2020-05-26 …
选择元音字母在单词中发音不同的一项.1;A:h(a)nd;B:f(a)ce;C:(a)pple.2 2020-06-17 …
(斐波那契数列)谁能解释一下这个程序中的“c[i]:=c[i]+a[i]+b[i];varn,i, 2020-07-23 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …
如图锐角三角形abc的内切圆圆I分别和边AB,BC,CA,切于点D,E,F,圆I的半径为根号3,A 2020-08-01 …
三元一次方程组a*x+b*y+c*z+d=0,e*x+f*y+g*z+h=0,i*x+j*y+k* 2020-08-03 …