已知e1,e2,e3是空间的一个基底,试问向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?并说明理由.
已知e1,e2,e3是空间的一个基底,试问向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?并说明理由.
解 由共面向量定理可知,关键是能否找到三个不全为零的实数x,y,z,使得xa+yb+zc=0,即x(3e1+2e2+e3)+y(-e1+e2+3e3)+z(2e1-e2-4e3)=0.亦即(3x-y+2z)e1+(2x+y-z)e2+(x+3y-4z)e3=0.
由于e1,e2,e3不共面,
故得
①+②求得z=-5x,代入③得y=-7x,取x=-1,
则y=7,z=5,于是-a+7b+5c=0,即a=7b+5c,所以a,b,c三向量共面.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)不等于0.试证明存在x1,x2属 2020-05-14 …
如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B’处,点A落在A’处.(1)试说明 2020-05-15 …
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF. (1 2020-05-17 …
《应用写作》第04章在线测试第二题、多项选择题1、叙述的要求有()A、人称明确B、叙述准确C、头绪 2020-06-03 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB, 2020-06-12 …
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 2020-07-09 …
设矩阵A=ααT,其中α是n维列向量,又已知αTα=1.(1)证明A2=A;(2)证明B=E+A+ 2020-07-20 …
设A为主对角线元素均为零的四阶实对称可逆矩阵,E为四阶单位矩阵B=0000000000k0000l 2020-08-02 …
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证 2020-12-25 …