早教吧作业答案频道 -->数学-->
直线l:y=kx+根号2与双曲线C:x^2/3-y^2=1交于不同的两点A.B,且向量OA.向量OB<6,求k值范围
题目详情
直线l:y=kx+根号2与双曲线C:x^2/3-y^2=1交于不同的两点A.B,且向量OA.向量OB<6,求k值范围
▼优质解答
答案和解析
设A(x1,y1),B(x2,y2)
将 y = k*x + √2 代入双曲线方程得:
x²/3 - (k*x + √2)² = 1
即 (1/3 - k²)x² - 2√2kx - 3 = 0
由已知,以上方程有两个不等实根 x1,x2
∴ (1) 1/3 - k² ≠ 0
(2) Δ=8k²+12(1/3 - k²)>0
且 x1+x2 = 2√2k / (1/3 - k²),x1x2 = -3 / (1/3 - k²)
由A,B在直线l上得:
y1 = k*x1 + √2
y2 = k*x2 + √2
再由已知:OA.OB < 6
即 x1*x2 + y1 * y2 < 6
x1*x2 + (k*x1 + √2) * (k*x2 + √2) < 6
展开得 (k²+1)x1x2 + √2k(x1+x2) - 4 < 0
∴ (3) (k²+1)*(-3 / (1/3 - k²)) + √2k*(2√2k / (1/3 - k²)) - 4 < 0
由(1) k≠√3/3 且 k≠-√3/3
由(2) 4 - 4k² >0,-1
将 y = k*x + √2 代入双曲线方程得:
x²/3 - (k*x + √2)² = 1
即 (1/3 - k²)x² - 2√2kx - 3 = 0
由已知,以上方程有两个不等实根 x1,x2
∴ (1) 1/3 - k² ≠ 0
(2) Δ=8k²+12(1/3 - k²)>0
且 x1+x2 = 2√2k / (1/3 - k²),x1x2 = -3 / (1/3 - k²)
由A,B在直线l上得:
y1 = k*x1 + √2
y2 = k*x2 + √2
再由已知:OA.OB < 6
即 x1*x2 + y1 * y2 < 6
x1*x2 + (k*x1 + √2) * (k*x2 + √2) < 6
展开得 (k²+1)x1x2 + √2k(x1+x2) - 4 < 0
∴ (3) (k²+1)*(-3 / (1/3 - k²)) + √2k*(2√2k / (1/3 - k²)) - 4 < 0
由(1) k≠√3/3 且 k≠-√3/3
由(2) 4 - 4k² >0,-1
看了 直线l:y=kx+根号2与双...的网友还看了以下: