早教吧作业答案频道 -->数学-->
若数列an的前n项和为Sn=2/3an+1/3,则数列an的通项公式是an=?
题目详情
若数列an的前n项和为Sn=2/3an+1/3,则数列an的通项公式是an=?
▼优质解答
答案和解析
a(1)=s(1)=(2/3)a(1)+1/3,a(1)=1.
s(n) = (2/3)a(n) + 1/3,
s(n+1)=(2/3)a(n+1)+1/3,
a(n+1) = s(n+1)-s(n)= (2/3)a(n+1) - (2/3)a(n),
a(n+1) = -2a(n),
{a(n)}是首项为1,公比为-2的等比数列.
a(n) = (-2)^(n-1)
s(n) = (2/3)a(n) + 1/3,
s(n+1)=(2/3)a(n+1)+1/3,
a(n+1) = s(n+1)-s(n)= (2/3)a(n+1) - (2/3)a(n),
a(n+1) = -2a(n),
{a(n)}是首项为1,公比为-2的等比数列.
a(n) = (-2)^(n-1)
看了 若数列an的前n项和为Sn=...的网友还看了以下: