早教吧作业答案频道 -->数学-->
设函数f(x)=(x-a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.我不知道做第二问,大
题目详情
设函数f(x)=(x-a)2lnx,a∈R
(Ⅰ)若x=e为y=f(x)的极值点,求实数a;
(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
我不知道做第二问,大家有没有什么简便的方法?但看不太懂的说……谢谢啦
(Ⅰ)若x=e为y=f(x)的极值点,求实数a;
(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
我不知道做第二问,大家有没有什么简便的方法?但看不太懂的说……谢谢啦
▼优质解答
答案和解析
(I)求导得f′(x)=2(x-a)lnx+(x-a)^2*1/x =(x-a)(2lnx+1- a/x),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
看了 设函数f(x)=(x-a)2...的网友还看了以下:
待定系数法8+2D-2E+F=0.36+5D+3E+F=0.10+3D-E+F=0应该怎么解出DE 2020-05-22 …
1.函数y=2/(x+1)的递减区间为2.若函数f(x)在(-2,3)上是增函数,则y=f(1.函 2020-05-23 …
我需要两道数学题的思路函数y=f(x)是偶函数,若x0时,f(x)=函数y=f(x)是奇函数,若x 2020-06-06 …
已知函数F(x)=Lnx,x属于[根号3e,e^3],函数g(x)=[F(x)]的平方-2a*f( 2020-06-06 …
已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数则()A. 2020-06-08 …
解3元1次方程组6D+F+36=05D-3E+F+34=03D+E+F+10=0求大神帮助 2020-06-09 …
一道高一数学函数部分的题y=(5e*-7)/(3e*+2),求函数的值域、(要步骤)*是x次方,即 2020-06-09 …
高一函数问题急在线等好的追分函数f(x)为R上的奇函数当x属于(-无穷大,0)时f(x)=x(x-1 2020-10-31 …
某同学在研究函数f(x)=x/1+|x|(x∈R)时,分别给出下面几个结论:①等式f(-x)+f(x 2020-11-01 …
阅读不等式5x≥4x+1的解法:解:由5x≥4x+1,两边同除以5x可得1≥(45)x+(15)x. 2020-11-28 …