早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•山东)已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=

题目详情
(2012•山东)已知函数f(x)=
lnx+k
ex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2
▼优质解答
答案和解析
(Ⅰ)∵f′(x)=
1−kx−xlnx
xex
,x∈(0,+∞),
且y=f(x)在(1,f(1))处的切线与x轴平行,
∴f′(1)=0,
∴k=1;
(Ⅱ)由(Ⅰ)得:f′(x)=
1
xex
(1-x-xlnx),x∈(0,+∞),
令h(x)=1-x-xlnx,x∈(0,+∞),
当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0,
又ex>0,
∴x∈(0,1)时,f′(x)>0,
x∈(1,+∞)时,f′x)<0,
∴f(x)在(0,1)递增,在(1,+∞)递减;
证明:(Ⅲ)∵g(x)=(x2+x)f′(x),
∴g(x)=
x+1
ex
(1-x-xlnx),x∈(0,+∞),
∴∀x>0,g(x)<1+e-2⇔1-x-xlnx<
ex
x+1
(1+e-2),
由(Ⅱ)h(x)=1-x-xlnx,x∈(0,+∞),
∴h′(x)=-(lnx-lne-2),x∈(0,+∞),
∴x∈(0,e-2)时,h′(x)>0,h(x)递增,
x∈(e-2,+∞)时,h(x)<0,h(x)递减,
∴h(x)max=h(e-2)=1+e-2
∴1-x-xlnx≤1+e-2
设m(x)=ex-(x+1),
∴m′(x)=ex-1=ex-e0
∴x∈(0,+∞)时,m′(x)>0,m(x)递增,
∴m(x)>m(0)=0,
∴x∈(0,+∞)时,m(x)>0,
ex
x+1
>1,
∴1-x-xlnx≤1+e-2
ex
1+x
(1+e-2),
∴∀x>0,g(x)<1+e-2