早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•张家界)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10,0)和(185,-245),以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1

题目详情
(2014•张家界)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10,0)和(
18
5
,-
24
5
),以OB为直径的⊙A经过C点,直线l垂直x轴于B点.
(1)求直线BC的解析式;
(2)求抛物线解析式及顶点坐标;
(3)点M是⊙A上一动点(不同于O,B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想m•n的值,并证明你的结论;
(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.
▼优质解答
答案和解析
(1)设直线BC的解析式为y=kx+b,
∵直线BC经过B、C,
0=10k+b
24
5
18
5
k+b

解得:
k=
3
4
b=
−15
2

∴直线BC的解析式为;y=
3
4
x-
15
2


(2)∵抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10,0)和(
18
5
,-
24
5
),
c=0
0=102a+10b+c
24
5
=(
18
5
)2a+
作业帮用户 2016-11-30
问题解析
(1)用待定系数法即可求得;
(2)应用待定系数法以及顶点公式即可求得;
(3)连接AE、AM、AF,则AM⊥EF,证得Rt△AOE≌RT△AME,求得∠OAE=∠MAE,同理证得∠BAF=∠MAF,进而求得∠EAF=90°,然后根据射影定理即可求得.
(4)分三种情况分别讨论,①当PQ=BQ时,作QH⊥PB,根据直线BC的斜率可知HB:BQ=4:5;即可求得,②当PB=QB时,则10-t=t即可求得,③当PQ=PB时,作QH⊥OB,根据勾股定理即可求得.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题考查了待定系数法求解析式,顶点坐标的求法,圆的切线的性质,数形结合分类讨论是本题的关键.
我是二维码 扫描下载二维码