早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013?北京)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn.(Ⅰ)若{an}为2,1,4,3,2,1,4,3

题目详情
(2013?北京)已知{a n }是由非负整数组成的无穷数列,该数列前n项的最大值记为A n ,第n项之后各项a n+1 ,a n+2 …的最小值记为B n ,d n =A n -B n
(Ⅰ)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N * ,a n+4 =a n ),写出d 1 ,d 2 ,d 3 ,d 4 的值;
(Ⅱ)设d是非负整数,证明:d n =-d(n=1,2,3…)的充分必要条件为{a n }是公差为d的等差数列;
(Ⅲ)证明:若a 1 =2,d n =1(n=1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.
▼优质解答
答案和解析

分析:
(Ⅰ)根据条件以及d n =A n -B n 的定义,直接求得d 1 ,d 2 ,d 3 ,d 4 的值.
(Ⅱ)设d是非负整数,若{a n }是公差为d的等差数列,则a n =a 1 +(n-1)d,从而证得d n =A n -B n =-d,
(n=1,2,3,4…).若d n =A n -B n =-d,(n=1,2,3,4…).可得{a n }是一个不减的数列,
求得d n =A n -B n =-d,即 a n+1 -a n =d,即{a n }是公差为d的等差数列,命题得证.
(Ⅲ)若a 1 =2,d n =1(n=1,2,3,…),则{a n }的项不能等于零,再用反证法得到{a n }的项不能超过2,
从而证得命题.


(Ⅰ)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d 1 =A 1 -B 1 =2-1=1,
d 2 =A 2 -B 2 =2-1=1,d 3 =A 3 -B 3 =4-1=3,d 4 =A 4 -B 4 =4-1=3.
(Ⅱ)充分性:设d是非负整数,若{a n }是公差为d的等差数列,则a n =a 1 +(n-1)d,
∴A n =a n =a 1 +(n-1)d,B n =a n+1 =a 1 +nd,∴d n =A n -B n =-d,(n=1,2,3,4…).
必要性:若 d n =A n -B n =-d,(n=1,2,3,4…).假设a k 是第一个使a k -a k-1 <0的项,
则d k =A k -B k =a k-1 -B k ≥a k-1 -a k >0,这与d n =-d≤0相矛盾,故{a n }是一个不减的数列.
∴d n =A n -B n =a n -a n+1 =-d,即 a n+1 -a n =d,故{a n }是公差为d的等差数列.
(Ⅲ)证明:若a 1 =2,d n =1(n=1,2,3,…),首先,{a n }的项不能等于零,否则d 1 =2-0=2,矛盾.
而且还能得到{a n }的项不能超过2,用反证法证明如下:
假设{a n }的项中,有超过2的,设a m 是第一个大于2的项,由于{a n }的项中一定有1,否则与d 1 =1矛盾.
当n≥m时,a n ≥2,否则与d m =1矛盾.
因此,存在最大的i在2到m-1之间,使a i =1,此时,d i =A i -B i =2-B i ≤2-2=0,矛盾.
综上,{a n }的项不能超过2,故{a n }的项只能是1或者2.
下面用反证法证明{a n }的项中,有无穷多项为1.
若a k 是最后一个1,则a k 是后边的各项的最小值都等于2,故d k =A k -B k =2-2=0,矛盾,
故{a n }的项中,有无穷多项为1.
综上可得,{a n }的项只能是1或者2,且有无穷多项为1.

点评:
本题主要考查充分条件、必要条件的判断和证明,等差关系的确定,用反证法和放缩法证明数学命题,
属于中档题.