早教吧 育儿知识 作业答案 考试题库 百科 知识分享

用0,1,2,3,4,5这六个数字组成无重复数字的正整数.(1)共有多少个四位数?其中偶数有多少个?(2)比4301大的四位数有多少个?(3))求所有这些四位数之和.注:以上结果均

题目详情
用0,1,2,3,4,5这六个数字组成无重复数字的正整数.
(1)共有多少个四位数?其中偶数有多少个?
(2)比4301大的四位数有多少个?
(3))求所有这些四位数之和. 
 注:以上结果均用数字作答.
▼优质解答
答案和解析
(1)由题意知,因为数字中有0,0不能放在首位,
∴先安排首位的数字,从五个非0数字中选一个,共有C51种结果,
余下的五个数字在三个位置进行全排列,共有A53种结果,
根据分步计数原理知共有A15•A35=300;
用0,1,2,3,4,5六个数字组成没有重复数字的四位偶数,则0不能排在首位,末位必须为0,2,4其中之一.
所以可分两类,末位为0,则其它位没限制,从剩下的5个数中任取3个,再进行排列即可,共有A53=60个
第二类,末位不排0,又需分步,第一步,从2或4中选一个来排末位,有C21=2种选法,
第二步排首位,首位不能排0,从剩下的4个数中选1个,有4种选法,
第三步,排2,3位,没有限制,从剩下的4个数中任取2个,再进行排列即可,共有12种.
把三步相乘,共有2×4×12=96个
最后,两类相加,共有60+96=156个
(2)当首位是5时,其他几个数字在三个位置上排列,共有A53=60,
当前两位是45时,共有A42=4×3=12个,
当前两位是43时,共有A42=4×3=12个,去掉4301即可,即有12-1=11个.
根据分类加法原理得到共有:60+12+12-1=83个
(3)(1+2+3+4+5)×A53×103+(1+2+3+4+5)×C41A42×(102+10+1)=15×65328=979920