早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在三角形ABC中∠ACB=∠2B,如图1,∠C=90,AD为△ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD1.如图2,当∠C不等于90度时,AD为△ABC的角平分线时,ABACCD有什么数量关系?那么,当AD为△ABC的外角平

题目详情
在三角形ABC中∠ACB=∠2B,如图1,∠C=90,AD为△ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD
1.如图2,当∠C不等于90度时,AD为△ABC的角平分线时,AB AC CD有什么数量关系?
那么,当AD为△ABC的外角平分线时,AB AC CD又有什么数量关系?[需要过程以及每一步这么做的原因]
▼优质解答
答案和解析
1.当∠C不等于90度时,AD为△ABC的角平分线时,AB=AC+CD;
2.当AD为△ABC的外角平分线时,AB+AC=CD
说明如下:
在BA延长线上取点E,使得:AE=AC,连结DE
因为AD为△ABC的外角平分线,所以:
∠CAD=∠EAD
又AD是△ACD与△AED的公共边,所以:
△ACD≌△AED (SAS)
则有:CD=ED,AC=AE
且∠ACD=∠AED
已知∠ACB=2∠B,那么:∠ACD=180°-∠ACB=180°-2∠B
即∠AED=180°-2∠B
在△BED中,∠B+∠AED+∠BDE=180°
那么:∠BDE=180°-∠B-∠AED=180°-∠B-(180°-2∠B)=∠B
所以△BED是等腰三角形
即有:BE=ED
所以:CD=ED=BE=AB+AE=AB+AC