早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求尺规作图三大不能问题证明.三等分角问题:三等分一个任意角;倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;化圆为方问题:作一个正方形,使它的面积等于已知圆

题目详情
求尺规作图三大不能问题证明.
三等分角问题:三等分一个任意角;倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.求这三大不能问题的证明.
▼优质解答
答案和解析
假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系.所以立方倍积实际是求作满足方程x3-2a3=0的线
段X,但些方程无有理根,若令a=1,则要作长度为2的立方根的线段,但2的立方根超出了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题.
用类似地想法,他证明了三等分角也是不可能解的问题.实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份.根据这一定理,任意角的三等分就不可能了.
看了 求尺规作图三大不能问题证明....的网友还看了以下: