早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,连接EF、FG、GH、EH,则下列说法不正确的是()A.△OEF和△OAB是位似图形B.△OEH和△OFG是位似图形C

题目详情
如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,连接EF、FG、GH、EH,则下列说法不正确的是(  )

A.△OEF和△OAB是位似图形
B.△OEH和△OFG是位似图形
C.△EFH和△ABD是位似图形
D.△OHG和△OGF是位似图形
▼优质解答
答案和解析
A、∵点E、F分别是AO、BO的中点,
∴EF∥AB,
∴△OEF∽△OAB,
∴△OEF和△OAB是位似图形正确,故本选项错误;
B、∵点E、F、G、H分别是AO、BO、CO、DO的中点,
∴EH∥AD,FG∥BC,
∵矩形ABCD中,AD∥BC,
∴EH∥FG,
∴△OEH∽△OFG,
∴△OEH和△OFG是位似图形正确,故本选项错误;
C、∵点E、F、G、H分别是AO、BO、CO、DO的中点,
∴EH∥AD,EF∥AB,
∴∠ADB=∠EHF,∠ABD=∠EFH,
∴△EFH∽△ABD,
∴△EFH和△ABD是位似图形正确,故本选项错误;
D、由图可知,△OHG是锐角三角形,△OGF是钝角三角形,
所以,△OHG和△OGF是位似图形错误,故本选项正确.
故选D.