早教吧作业答案频道 -->其他-->
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.(1)证明:BE⊥CD’;(2)求二面角D'-BC-E的余弦值.
题目详情
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.
(1)证明:BE⊥CD’;
(2)求二面角D'-BC-E的余弦值.
(1)证明:BE⊥CD’;
(2)求二面角D'-BC-E的余弦值.
▼优质解答
答案和解析
(1)证明:∵AD=2AB=2,E是AD的中点,
∴△BAE,△CDE是等腰直角三角形,∠BEC=90°,
又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC
∴BE⊥面D'EC,∴BE⊥CD’.
(2)如图,以EB,EC为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.
则B(
,0,0),C(0,
,0),D′(0,
,
)
设平面BEC的法向量为
=(0,0,1);平面D'BC的法向量为
=(x2,y2,z2)
=(−
,
∴△BAE,△CDE是等腰直角三角形,∠BEC=90°,
又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC
∴BE⊥面D'EC,∴BE⊥CD’.
(2)如图,以EB,EC为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.
则B(
2 |
2 |
| ||
2 |
| ||
2 |
设平面BEC的法向量为
. |
n1 |
n |
BC |
2 |
作业帮用户
2017-09-26
|
看了 已知矩形ABCD,AD=2A...的网友还看了以下:
有a,b,c,d,e,5中烃,具有下列性质:1.各取0.1mol分别充分燃烧,其中b.c.e燃烧所 2020-04-25 …
在五边形ABCD中,∠A=∠D=90,∠B:∠C:∠E=2:3:4,求∠B,∠C,∠E的度数在五边 2020-05-13 …
设有关系模式R(A,B,C,D,E,F) ,其函数依赖集为F={E→D,C→B,CE→F,B→A}。 2020-05-23 …
设有关系模式R(A,B,C,D,E,F),其函数依赖集为F={E→D,C→B,CE→F,B→A}。则 2020-05-24 …
如图,若AB∥CD,则∠B、∠C、∠E三者之间的关系是()A.∠B+∠C+∠E=180°B.∠B+ 2020-06-12 …
A+足量的H2SO4可得B(部分生成产物略)A+足量的H2SO4可得B,B加X为C,C加X为D,D 2020-06-26 …
你能辨别下列各组字,并用这个字组成一个成语吗?(1)A.戍B.戌C.戎E.戒A.B.C.E.(2) 2020-06-26 …
这5道题用波兰式表达(1)A*(B-C)+T/(D+E)-F/(S*H)(2)A/(B*C(E+F 2020-07-08 …
我的关于有损分解和无损分解的理解是正确的么?学的有点糊涂,我是这么理解的,假设原来的关系R为(A, 2020-07-12 …
#include"stdio.h"main(){inta,b,c,e;printf(“please 2020-07-23 …