早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设y=y(x)是一个连续函数,且满足关系式y(x)=cos2x+∫(0~x)y(t)sintdt,求y(x)

题目详情
设y=y(x)是一个连续函数,且满足关系式y(x)=cos2x+∫(0~x)y(t)sintdt,求y(x)
▼优质解答
答案和解析
设y=y(x)是一个连续函数,且满足关系式y(x)=cos2x+【0,x】∫y(t)sintdt,求y(x)
dy/dx=-2sin2x+ysinx.(1)
dy/dx-ysinx=-2sin2x
先求齐次方程dy/dx-ysinx的通解.
分离变量得dy/y=sinxdx;积分之得lny=-cosx+lnC₁;故y=e^(-cosx+lnC₁)=C₁e^(-cosx);
将C₁换成x的函数u,得y=ue^(-cosx).(2)
将(2)对x取导数得dy/dx=(du/dx)e^(-cosx)+u[e^(-cosx)]sinx.(3)
将(2)和(3)代入(1)式得:
(du/dx)e^(-cosx)+u[e^(-cosx)]sinx=-2sinx+[ue^(-cosx)]sinx
化简得(du/dx)e^(-cosx)=-2sinx
分离变量得du=-2sinxe^(cosx)dx
积分之,得u=-2∫sinxe^(cosx)dx=2∫e^(cosx)d(cosx)=2e^(cosx)+C
代入(2)式即得通解y=[2e^(cosx)+C]e^(-cosx)=2+Ce^(-cosx).