早教吧 育儿知识 作业答案 考试题库 百科 知识分享

美籍匈牙利数学家波利亚(GeorgePolya,1887-1985)曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”确实,类比是科学发展的灵魂,是数学发现的

题目详情
美籍匈牙利数学家波利亚(GeorgePolya,1887-1985)曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”确实,类比是科学发展的灵魂,是数学发现的重要工具之一,例如,在Rt△ABC中,∠C=90°,a,b,c分别是A,B,C对边,由勾股定理可得c2=a2+b2
(1)由平面内直角三角形的勾股定理,我们可类比猜想得出空间中四面体的一个性质:在四面体S-ABC中,三个侧面SAB、SBC、SAC两两相互垂直,则___.
(2)试证明你所猜想的结论是否正确.
▼优质解答
答案和解析
(1)线的关系类比到面的关系,猜测:S△BCD2=S△ABC2+S△ACD2+S△ADB2
(2)理由如下:作业帮如图作AE⊥CD连BE,则BE⊥CD.
S△BCD2 =
1
4
CD2•BE2 =CD2•(AB2+AE2)=
1
4
(AC2+AD2)(AB2+AE2
=
1
4
(AC2AB2 +AD2AB2 +AC2AE2+AD2AE2
=
1
4
(AC2AB2 +AD2AB2+CD2AE2
=S△ABC2+S△ACD2+S△ADB2
故答案为:S△BCD2=S△ABC2+S△ACD2+S△ADB2