早教吧作业答案频道 -->数学-->
数列求和n三次方∑n?
题目详情
数列求和n三次方
∑n?
∑n?
▼优质解答
答案和解析
先推导1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
由n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
得
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
整理
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
所以1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
再推导1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
由(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
得
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
整理后
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
进而1^3+2^3+...+n^3=[n(n+1)/2]^2
由n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
得
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
整理
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
所以1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
再推导1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
由(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1
得
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
整理后
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2
进而1^3+2^3+...+n^3=[n(n+1)/2]^2
看了 数列求和n三次方∑n?...的网友还看了以下:
一幅图像可以看成由m行和n列个小正方形构成的大矩形,其中每个小正方形称为一个点,每个点的颜色是若干 2020-05-13 …
在公差不为零的等差数列{x(n)}和等比数列{y(n)}中,已知x1=1,且x1=y1,x2=y2 2020-06-04 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
设三角形AnBnCn的三边长an,bn,cn,三角形AnBnCn的面积为Sn,n=1,2,3,., 2020-07-09 …
请大家看下关于数据库的问题1.不同型实体之间存在的1:1,1:N,1:M和N:M三种联系方式,各举 2020-07-10 …
有三列数第一列:2,-4,8,-16,32,-64.第二列:3,-3,9,-15,33,-63.第 2020-07-25 …
1.3.7.13......第N个是什么第第第一二三排排排第一列1,4,9,6第二列2,3,8,1 2020-07-25 …
第一行2345第二列是3456第二行是3456第三列4567到N行和N列交叉点怎么用 2020-07-25 …
如图是一个有规律排列的数表,请用含n的代数式(n为正整数)表示数表中的第n行第n列的数第一列第二列第 2020-11-17 …
一幅图像可以看成由m行和n列个小正方形构成的大矩形,其中每个小正方形称为一个点,每个点的颜色是若干个 2020-11-25 …
相关搜索:数列求和n三次方∑n