早教吧作业答案频道 -->其他-->
如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的函数表达式;(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x
题目详情
如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的函数表达式;
(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;
(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.
(1)求抛物线的函数表达式;
(2)若矩形EFMN的顶点F、M在位于x轴上方的抛物线上,一边EN在x轴上(如图2).设点E的坐标为(x,0),矩形EFMN的周长为L,求L的最大值及此时点E的坐标;
(3)在(2)的前提下(即当L取得最大值时),在抛物线对称轴上是否存在一点P,使△PMN沿直线PN折叠后,点M刚好落在y轴上?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)由题意可设抛物线为y=a(x+1)(x-3),
抛物线过点(0,3),
∴3=a(0+1)(0-3),
解得:a=-1,
抛物线的解析式为:y=-(x+1)(x-3),
即:y=-x2+2x+3;
(2)由(1)得抛物线的对称轴为直线x=1,
∵E(x,0),
∴F(x,-x2+2x+3),EN=2(1-x),
∴L=2EN+2EF=4(1-x)+2(-x2+2x+3),
化简得 l=-2x2+10,
∵-2<0,
∴当x=0时,L取得最大值是10,
此时点E的坐标是(0,0);
(3)由(2)得:E(0,0),F(0,3),M(2,3),N(2,0),
设存在满足条件的点P(1,y),
并设折叠后点M的对应点为M1,
∴∠NPM=∠NPM1=90°,PM=PM1,
PG=3-y,GM=1,PH=|y|,HN=1,
∵∠NPM=90°,
∴PM2+PN2=MN2,
∴(3-y)2+12+y2+12=32,
解得:)时,点M1也在y轴上,
故存在满足条件的点P,点P的坐标为(1,)或(1,).
抛物线过点(0,3),
∴3=a(0+1)(0-3),
解得:a=-1,
抛物线的解析式为:y=-(x+1)(x-3),
即:y=-x2+2x+3;
(2)由(1)得抛物线的对称轴为直线x=1,
∵E(x,0),
∴F(x,-x2+2x+3),EN=2(1-x),
∴L=2EN+2EF=4(1-x)+2(-x2+2x+3),
化简得 l=-2x2+10,
∵-2<0,
∴当x=0时,L取得最大值是10,
此时点E的坐标是(0,0);
(3)由(2)得:E(0,0),F(0,3),M(2,3),N(2,0),
设存在满足条件的点P(1,y),
并设折叠后点M的对应点为M1,
∴∠NPM=∠NPM1=90°,PM=PM1,
PG=3-y,GM=1,PH=|y|,HN=1,
∵∠NPM=90°,
∴PM2+PN2=MN2,
∴(3-y)2+12+y2+12=32,
解得:)时,点M1也在y轴上,
故存在满足条件的点P,点P的坐标为(1,)或(1,).
看了 如图1,已知抛物线y=ax2...的网友还看了以下:
在平面直角坐标系xOy中,抛物线y=mx2+2x+m2+2的开口向下,且抛物线与y轴的交于点A,与 2020-04-07 …
如图,一次函数y1=-x+1的图象与反比例函数y2=−2x的图象交于A、B两点.过点A作AC⊥x轴 2020-04-08 …
如图9所示,在距地面80m高的水平面上做匀加速直线运动的飞机上每隔1s依次放下a,b,c三物体,抛 2020-06-07 …
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A.点A关于直线 2020-07-09 …
如图,在数轴上表示互为相反数的两数的点是()A.点A和点CB.点B和点CC.点A和点BD.点B和点 2020-07-12 …
(2014•漳州)如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点DB 2020-07-20 …
(2013•菏泽)如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a 2020-07-21 …
如图所示,在距地面80m高的水平面上做匀加速直线运动的飞机上每隔1s依次放下a、b、c三物体,抛出 2020-07-29 …
在平直轨道上匀速行驶的火车车厢里竖直向上扔起一个石子,石子将落在抛出点a正前方,b正后方c抛出点上 2020-11-07 …
(2014•南充)如图,抛物线y=x2+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3, 2020-11-12 …