早教吧作业答案频道 -->数学-->
如图,三角形ABC是等边三角形,点D,E分别在BC,AC上,且BD=1/3BC,CE=1/3AC,BE与AD相交于点F,连接DE,则下列结论:1.角AFE=60度;2.DE⊥AC;3.CE^2=DF×DA;4.AF×BE=AE×AC,其中正确的是(填序号).
题目详情
如图,三角形ABC是等边三角形,点D,E分别在BC,AC上,且BD=1/3BC,CE=1/3AC,BE与AD相交于点F,连接DE,则下列结论:1.角AFE=60度;2.DE⊥AC;3.CE^2=DF×DA;4.AF×BE=AE×AC,其中正确的是___________(填序号).
▼优质解答
答案和解析
1. ∵AB=BC=AC, BD=1/3BC,CE=1/3AC
∴BD=CE,∠ABC=∠C
∴ΔABD≌ΔBCE
∴∠BAD=∠CBE
∴∠ADC=∠ABC+∠BAD=∠BFD+∠CBE=>∠BFD=60º(因∠ABC=60º)
∴∠AFE=∠BFD=60º
2. ∵BC=AC, CE=1/3AC即CE=1/2CD,且∠C=60º
∴DE⊥AC
3. ∵∠BFD=60º(由1证得)
∴∠BFD=∠C
∴ΔBDF∽ΔBEC
∴DF/CE=BD/BE=〉DF*BE=CE*BD=〉DF*BE=CE^2
∵ΔABD≌ΔBCE(由1证得)
∴AD=BE
∴CE^2=DF*DA
4. ∵∠BAD=∠CBE(由1证得), ∠ABC=∠BAC=60º
∴∠ABE=∠EAF
∵∠AFE=60º(由1证得)
∴∠AFE=∠BAC
∴ΔABE∽ΔFAE
∴AB/AF=BE/AE=〉AF*BE=AE*AB=〉AF*BE=AE*AC
所以其中正确的是1、2、3、4
∴BD=CE,∠ABC=∠C
∴ΔABD≌ΔBCE
∴∠BAD=∠CBE
∴∠ADC=∠ABC+∠BAD=∠BFD+∠CBE=>∠BFD=60º(因∠ABC=60º)
∴∠AFE=∠BFD=60º
2. ∵BC=AC, CE=1/3AC即CE=1/2CD,且∠C=60º
∴DE⊥AC
3. ∵∠BFD=60º(由1证得)
∴∠BFD=∠C
∴ΔBDF∽ΔBEC
∴DF/CE=BD/BE=〉DF*BE=CE*BD=〉DF*BE=CE^2
∵ΔABD≌ΔBCE(由1证得)
∴AD=BE
∴CE^2=DF*DA
4. ∵∠BAD=∠CBE(由1证得), ∠ABC=∠BAC=60º
∴∠ABE=∠EAF
∵∠AFE=60º(由1证得)
∴∠AFE=∠BAC
∴ΔABE∽ΔFAE
∴AB/AF=BE/AE=〉AF*BE=AE*AB=〉AF*BE=AE*AC
所以其中正确的是1、2、3、4
看了 如图,三角形ABC是等边三角...的网友还看了以下:
已知a是3个正数a.b.c中最大的数,且a/b=c/d,则a+d于c+d的大小关系是?(则a+d于c 2020-03-31 …
在0.1mol.L-1的Na2S溶液中,含有多种分子和离子,下列关系不正确的是(D) A.c(S2 2020-05-16 …
关于人体衰老细胞和癌细胞的叙述,正确的是()A.癌细胞与衰老细胞都有基因表达B.癌变和衰老都是细胞 2020-07-25 …
右图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→ 2020-11-23 …
aW、bX、cC、dZ、eR是五种短周期元素,e-d=d-c=c-b=b-a=4,其中一种是常见金属 2020-11-26 …
关于电容器的电容C、电压U和所带电荷量Q之间的关系,以下说法正确的是()A.C由U确定B.C由Q确定 2020-11-29 …
已知正数,a,b,c,d,c,e,f,都是正数,且bcdef/a=1/2,acdef/b=1/4,a 2020-12-23 …
明天就考了,已有如下定义和输入语句:inta1,a2;charc1,c2;scanf("%d%d%c 2020-12-24 …
如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1)、(-1,1), 2020-12-25 …
选出下列字音有误的一项:()A.订正dìng恫吓dònghè句读dòuB.踱步duó阿谀ēyú婀娜ē 2020-12-29 …