早教吧 育儿知识 作业答案 考试题库 百科 知识分享

正方形ABCD是圆O的内接正方形,延长BA至E使AE等于AB连接ED一;证明:直线ED是圆O的切线.二;连接EO交AD于F求证EF=2FO

题目详情
正方形ABCD是圆O的内接正方形,延长BA至E 使AE等于AB 连接ED
一;证明:直线ED是圆O的切线.
二;连接EO 交AD于F 求证EF=2FO
▼优质解答
答案和解析
证明:连接AO,BD,可知BD经过点O,且O为BD的中点
而三角形BAD为等腰直角三角形
故三角形AOD也为等腰直角三角形,即AO⊥OD
又A为BE的中点
故OA//DE
故DE⊥OD
即DE为圆O的切线
2.O,A是中点
故AO//DE,且DE=2AO
故三角形AOF∽三角形DEF
故EF/FO=DE/AO=2
即EF=2FO