早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1、图2、图3、…、图n分别是⊙O的内接正三角形A1A2A3,正四边形A1A2A3A4、正五边形A1A2A3A4A5、…、正n边形A1A2A3…An,点M、N分别是弧A1A2和A2A3上的点.且弧A1M=弧A2N,连接AnM、A1N相交于点P,

题目详情
如图1、图2、图3、…、图n分别是⊙O的内接正三角形A1A2A3,正四边形A1A2A3A4、正五边形A1A2A3A4A5、…、正n边形A1A2A3…An,点M、N分别是弧A1A2和A2A3上的点.且弧A1M=弧A2N,连接AnM、A1N相交于点P,观察并分析图1、图2、图3、…中∠AnPN的大小,推测∠AnPN的度数与正多边形边数n的关系为
(n-2)180
n
(n-2)180
n
度.
▼优质解答
答案和解析
图1中,由三角形外角定理可得:∠A3PN=∠A1A3M+A3A1N=∠A3A1A2=60°,为其一个内角;
同理在正四边形A1A2A3A4中,有∠A4PN=∠A1A2A3=90°,为其一个内角;
…,
分析可得:在正n边形A1A2A3…An,亦有∠A4PN=∠A1A2A3,即为其的一个内角;
故∠AnPN=
(n-2)180
n