早教吧作业答案频道 -->数学-->
coslnxdx上限=e的π/2,下限=1,用分部积分法
题目详情
coslnxdx 上限=e的π/2,下限=1,用分部积分法
▼优质解答
答案和解析
换元令lnx=t,则x=e^t
原积分=∫{0,pi/2}cost*e^tdt
=∫{0,pi/2}costd(e^t)
=[cost*e^t]{0,pi/2}-∫{0,pi/2}e^td(cost)
=-1+∫{0,pi/2}e^t*sintdt
=-1+∫{0,pi/2}sintd(e^t)
=-1+[sint*e^t]{0,pi/2}-∫{0,pi/2}e^td(sint)
=-1+e^(pi/2)-∫{0,pi/2}e^t*costdt
2×原积分=-1+e^(pi/2)
原积分=1/2[-1+e^(pi/2)]
原积分=∫{0,pi/2}cost*e^tdt
=∫{0,pi/2}costd(e^t)
=[cost*e^t]{0,pi/2}-∫{0,pi/2}e^td(cost)
=-1+∫{0,pi/2}e^t*sintdt
=-1+∫{0,pi/2}sintd(e^t)
=-1+[sint*e^t]{0,pi/2}-∫{0,pi/2}e^td(sint)
=-1+e^(pi/2)-∫{0,pi/2}e^t*costdt
2×原积分=-1+e^(pi/2)
原积分=1/2[-1+e^(pi/2)]
看了 coslnxdx上限=e的π...的网友还看了以下:
1.平面直角坐标系内点A(n,1-n)一定不在A:第1象限B第2象限C:第3象限D:第4象限2.已 2020-05-14 …
已知函数f(x)=x(x-c)2,x∈R,c是常数. ⑴若c=1,求这个函数的图像在x=0处的切 2020-05-15 …
若在关于x的恒等式(Mx+N)/(x2+x-2)=2/(x+a)-c/(x-b)中,(Mx+N)/ 2020-05-17 …
把多项式x^2(a-1)+x^3(1-a)分解因式正确的是()A.(a-1)(x^2+x^3)B. 2020-06-02 …
1.2*(x+y)^2+(x+y)(c+d)-6(c+d)^22.21a^2-13ab+2b^23 2020-06-05 …
下列函数在给定区间上满足拉格朗日定理条件的是A.f(x)=(x-1)^(-2/3),[0,2]B. 2020-07-29 …
一元多项式在复数域内分解成一次因式的乘积(1)x^n-C(2n,2)x^(n-1)+C(2n,4) 2020-08-03 …
已知:x^3-9x^2+25x+13=a(x+1)(x-2)(x-3)=b(x-1)(x-2)(x- 2020-10-31 …
*****求好心人教初中恒等式!****ax^3+bx^2-18x=+8恒等(ax+2)(x^2+3 2020-11-04 …
(2011•茂名一模)已知全集U=R,集合A={x|x<-2或x>4},B={x|-3≤x≤3},则 2020-11-12 …