早教吧作业答案频道 -->数学-->
coslnxdx上限=e的π/2,下限=1,用分部积分法
题目详情
coslnxdx 上限=e的π/2,下限=1,用分部积分法
▼优质解答
答案和解析
换元令lnx=t,则x=e^t
原积分=∫{0,pi/2}cost*e^tdt
=∫{0,pi/2}costd(e^t)
=[cost*e^t]{0,pi/2}-∫{0,pi/2}e^td(cost)
=-1+∫{0,pi/2}e^t*sintdt
=-1+∫{0,pi/2}sintd(e^t)
=-1+[sint*e^t]{0,pi/2}-∫{0,pi/2}e^td(sint)
=-1+e^(pi/2)-∫{0,pi/2}e^t*costdt
2×原积分=-1+e^(pi/2)
原积分=1/2[-1+e^(pi/2)]
原积分=∫{0,pi/2}cost*e^tdt
=∫{0,pi/2}costd(e^t)
=[cost*e^t]{0,pi/2}-∫{0,pi/2}e^td(cost)
=-1+∫{0,pi/2}e^t*sintdt
=-1+∫{0,pi/2}sintd(e^t)
=-1+[sint*e^t]{0,pi/2}-∫{0,pi/2}e^td(sint)
=-1+e^(pi/2)-∫{0,pi/2}e^t*costdt
2×原积分=-1+e^(pi/2)
原积分=1/2[-1+e^(pi/2)]
看了 coslnxdx上限=e的π...的网友还看了以下:
已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是y=4/[ 2020-04-11 …
设随机变量X的分布函数为F(X),且E(X)有限,则有xF(X)的极限为0 2020-05-12 …
lim(x->0)(1/x-1/e^x-1)我这种解法错在哪里?我的解法如下lim(x->0)(1 2020-05-15 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
第一题:∫(上限ln2下限0)e^x(1+e^x)^2dx第二题:不计算积分,比较∫(上限1下限0 2020-06-12 …
证明题方程lnx=e^x-∫√(1-cos2x)dx积分上下限为0到π在(0,∞)内有且仅证明题方 2020-06-16 …
为什么f(x)=e^(x^2)不是初等函数?初等函数是指数函数、对数函数、幂函数、三角函数和反三角 2020-08-02 …
已知x趋于0,[(根号1+f(x)sinx)-1]/[x(e^x-1)]的极限=a,求c,k使f(x 2020-11-01 …
当x=0时,f(x)=1,当x不等于0时,f(x)=x分之e*x-1.为什么导函数f(x)一撇在x= 2020-12-17 …
一道求极限题中的一个求导问题.一道求极限题.lim1/x[(1+x)^1/x-e]x趋向于0中括号中 2021-02-16 …