早教吧 育儿知识 作业答案 考试题库 百科 知识分享

用分部积分法做∫(arcsin√x/√x)dx我知道真确答案是2√xarcsin√x+2√(1-x)+c

题目详情
用分部积分法做∫(arcsin√x/√x)dx 我知道真确答案是2√xarcsin√x+2√(1-x)+c
▼优质解答
答案和解析
∫(arcsin√x/√x)dx 因 2d√x=dx /√x
= 2∫arcsin√xd√x 令√x=u
= 2∫arcsin u du
=2 {u arcsin u- ∫u/√[1-u^2]du}
=2 u arcsin u+ ∫1/√[1-u^2]d(1-u^2)
=2 u arcsin u+ 2√[1-u^2]+c
=2 √x arcsin √x+ 2√[1-x]+c