早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5求证不存在整数k,使得f(k)=8

题目详情
已知f(x)是整系数多项式,存在四个不同的整数a,b,c,d,使得f(a)=f(b)=f(c)=f(d)=5
求证不存在整数k,使得f(k)=8
▼优质解答
答案和解析
根据题给条件f(x)-5=(x-a)(x-b)(x-c)(x-d)q(x),q(x)仍是整系数多项式.
如果存在整数k使得f(k)=8,那么
8-5=3=(k-a)(k-b)(k-c)(k-d)q(k),
此式右端是5个整数的乘积,值为3.
这5个整数必然有一个等于3或者-3,以下分两种情况分别讨论:
第一种情况:如果有一个等于3的话,另外4个数的乘积为1,它们的取值情况为:
(1)4个数都是1,a,b,c,d中至少有三个相等的,与已知条件矛盾;
(2)两个1,两个-1,a,b,c,d中至少有两个相等的,也与已知条件矛盾.
第二种情况:如果有一个等于-3,另外4个数的乘积为-1,它们的取值情况为:
(1)1个是-1,另外三个是1;
(2)1个是1,另外三个是-1.
也不难分析这种情况也导致a,b,c,d中至少有两个相等的,也就是导致矛盾.
综上可知不存在整数k,使得f(k)=8.
注:可以看出来本题中的8可以改成别的数,只要和5的差是质数即可.