早教吧作业答案频道 -->数学-->
如图,△ABC是等边三角形,线段AD为BC边上的中线,动点P在直线AD上运动时以PC为一边且在PC的下方做等边△PCE,连接BE.(1)求∠CAD的值;(2)当点P在线段AD上(点P不与点A重合)时,求证
题目详情
如图,△ABC是等边三角形,线段AD为BC边上的中线,动点P在直线AD上运动时以PC为一边且在PC的下方做等边△PCE,连接BE.
(1)求∠CAD的值;
(2)当点P在线段AD上(点P不与点A重合)时,求证:AP=BE;
(3)当点P运动的过程中(点P不与点A重合),若点C关于直线BE的对称点是Q点,求证:CQ=AC.
(1)求∠CAD的值;
(2)当点P在线段AD上(点P不与点A重合)时,求证:AP=BE;
(3)当点P运动的过程中(点P不与点A重合),若点C关于直线BE的对称点是Q点,求证:CQ=AC.
▼优质解答
答案和解析
(1)∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵线段AD为BC边上的中线,
∴∠CAD=
∠CAB=
×60°=30°.
(2)证明:∵△ABC和△PCE是等边三角形,
∴AC=BC,CP=CE,∠ACB=∠PCE=60°,
∴∠ACB-∠PCB=∠PCE-∠PCB,
∴∠ACP=∠ECB,
在△ACP和△BCE中
∴△ACP≌△BCE(SAS),
∴AP=BE.
(3)证明:∵△ABC是等边三角形,
∴AC=BC,
∵△ACP≌△BCE,
∴∠CBE=∠CAD=30°,
连接BQ,延长BE交CQ于M,
∵C、Q关于直线BE对称,
∴BM⊥CQ,CM=QM,
∴BC=BQ,
∴∠CBE=∠QBE=30°,
即∠CBQ=60°,
∵BC=BQ,
∴△CBQ是等边三角形,
∴CQ=BC,
∴CQ=AC.
∴∠BAC=60°,AB=AC,
∵线段AD为BC边上的中线,
∴∠CAD=
1 |
2 |
1 |
2 |
(2)证明:∵△ABC和△PCE是等边三角形,
∴AC=BC,CP=CE,∠ACB=∠PCE=60°,
∴∠ACB-∠PCB=∠PCE-∠PCB,
∴∠ACP=∠ECB,
在△ACP和△BCE中
|
∴△ACP≌△BCE(SAS),
∴AP=BE.
(3)证明:∵△ABC是等边三角形,
∴AC=BC,
∵△ACP≌△BCE,
∴∠CBE=∠CAD=30°,
连接BQ,延长BE交CQ于M,
∵C、Q关于直线BE对称,
∴BM⊥CQ,CM=QM,
∴BC=BQ,
∴∠CBE=∠QBE=30°,
即∠CBQ=60°,
∵BC=BQ,
∴△CBQ是等边三角形,
∴CQ=BC,
∴CQ=AC.
看了 如图,△ABC是等边三角形,...的网友还看了以下:
读图,回答1~3题。1.图中河流P是[]A.黑龙江B.黄河C.长江D.珠江2.P河三角洲地区农业模 2020-05-16 …
平面内,若点P与A、B两点构成等腰三角形,我们称点P是A、B两点的“巧妙点”.类似地,平面内,若点 2020-05-16 …
如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、点C,若点B的 2020-06-14 …
如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的 2020-06-15 …
已知a与b是异面直线,P是a.b外的一点,经过点P且a.b都相交的直线有几条 2020-06-18 …
(2011·浙江月考)下图表示以南极为中心的半球俯视图,M为极点,a为晨昏线,PM和QM表示两条经 2020-06-30 …
该图表示以南极为中心的半球俯视图,M为极点,a为晨昏线,PM和QM表示两条经线,P、Q在a上,且P 2020-06-30 …
如图,已知棱长为4的正方体ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C' 2020-07-31 …
异面直线a,b成80°角,点P是a,b外的一个定点,若过P点有且仅有n条直线与a,b所成的角相等且 2020-08-02 …
问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点 2020-10-31 …