早教吧作业答案频道 -->其他-->
翻译forthatlongbefamousfor戒烟正确形式whendidhe(become)famous?单项选择1.Mozartstartedmusicwhenhewasveryyoung.A.writeB.wroteC.writingD.writes2.Edisonwasanperson.A.outstandingB.badC.unkownD.famous3.I'llmajorphysicswhenI
题目详情
翻译
for that long
be famous for
戒烟
正确形式
when did he (become)famous?
单项选择
1.Mozart started music when he was very young.
A.writeB.wroteC.writingD.writes
2.Edison was an person.
A.outstandingB.badC.unkownD.famous
3.I'll major physics when I go to college
A.inB.atC.toD.on
4.deng yaping was number 1 in the ITTF
A.woman's single playerB.women's singles playerC.women singles playerD.women's single play
for that long
be famous for
戒烟
正确形式
when did he (become)famous?
单项选择
1.Mozart started music when he was very young.
A.writeB.wroteC.writingD.writes
2.Edison was an person.
A.outstandingB.badC.unkownD.famous
3.I'll major physics when I go to college
A.inB.atC.toD.on
4.deng yaping was number 1 in the ITTF
A.woman's single playerB.women's singles playerC.women singles playerD.women's single play
▼优质解答
答案和解析
如此长,如此久
由于.而出名
一般式
CAAD
由于.而出名
一般式
CAAD
看了 翻译forthatlongb...的网友还看了以下:
一道简单的二阶导数和一道简单的不定积分1,设f"(x)存在,证明lim(h->0)[f(x0+h) 2020-05-13 …
证明lim(h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)已知f 2020-05-17 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-12 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-18 …
变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h 2020-07-11 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○ 2020-07-26 …
导数题设f(5)=5,f'(5)=3,g(5)=4,g'(5)=1在下列情况下求h(5)和h'(5 2020-07-30 …
如何证明若函数f(x)与H(x)在数集A上有界,则函数f(x)+H(x),f(x)-H(x),f( 2020-07-31 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …