早教吧作业答案频道 -->数学-->
已知递增的等比数列{an}的前三项之积是64,且a2-1,a3-3,a4-9成等差数列.(1)求数列{an}的通项公式an;(2)设bn=n•an,求数列{bn}的前n项和Sn.
题目详情
已知递增的等比数列{an}的前三项之积是64,且a2-1,a3-3,a4-9成等差数列.
(1)求数列{an}的通项公式an;
(2)设bn=n•an,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式an;
(2)设bn=n•an,求数列{bn}的前n项和Sn.
▼优质解答
答案和解析
(1)设公比为q由题意得:a2=4,∵2(a3-3)=a2-1+a4-9,∴2(4q-3)=3+4q2-9,解得:q=2∴an=2n(2)∵Sn=b1+b2+…+bn=1×2+2×22+…+n×2n∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1两式相减得,Sn=-2-22-23-…-2n...
看了 已知递增的等比数列{an}的...的网友还看了以下:
如何推导这个因式分解题!a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^( 2020-05-16 …
等差数列{an},a1+a2+…+a9=A,a(n-8)+a(n-7)+…+an=B,则Sn等于( 2020-07-09 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
用a^n-b^n=(a-b)(a^(n-1)+a^(n-2)*b+...+ab^(n-2)+b^( 2020-07-14 …
请问:二项式定理N不为整数的情况下,公式是怎样的?二项式定理a^n-b^n=(a-b)(a^(n- 2020-07-31 …
公式难题,abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?……………… 2020-08-04 …
高中数学不等式有关习题,急,1.a>b>c,n属于正整数,且1/a-b+1/b-c≥n/a-c恒成立 2020-11-06 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …
算术平方根和根号的方法我是初一新生,太复杂会看不懂滴,有什么特例啊诀窍啊~比如有关根号的运算√(n^ 2020-11-28 …
公式难题...abcdefgn分别为不等的数值.a+b+n=?a+c+n=?a+d+n=?…………… 2020-11-28 …