早教吧 育儿知识 作业答案 考试题库 百科 知识分享

某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.

题目详情

某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:

(1)射中10环或7环的概率;

(2)不够7环的概率.

▼优质解答
答案和解析

  解析:(1)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A+B,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.

  ∴射中10环或7环的概率为0.49.

  (2)不够7环从正面考虑有以下几种情况:射中6环、5环、4环、3环、2环、1环、0环,但由于这些概率都未知,故不能直接入手,可考虑从反面入手,不够7环的反面是大于等于7环,即7环、8环、9环、10环,由于此两事件必有一个发生,另一个不发生,故是对立事件,可用对立事件的方法处理.

  设“不够7环”为事件E,则事件为“射中7环或8环或9环或10环”,由(1)可知“射中7环”、“射中8环”等是彼此互斥的事件.

  ∴P()=0.21+0.23+0.25+0.28=0.97

  从而P(E)=1-P()=1-0.97=0.03

  ∴射不够7环的概率为0.03.

看了某射手在一次射击训练中,射中1...的网友还看了以下: