早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平

题目详情
已知:如图,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围.
▼优质解答
答案和解析
(1)∵四边形ABCD是平行四边形,
∴AD=BC=6.
在Rt△ADE中,AD=6,∠EAD=30°,
∴AE=AD•cos30°=3
3
,DE=AD•sin30°=3,
∴△AED的周长为:6+3
3
+3=9+3
3


(2)在△AED向右平移的过程中:
(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.

∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0÷tan30°=
3
t,
∴S=S△D0NK=
1
2
ND0•NK=
1
2
t•
3
t=
3
2
t2
(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.

∵AA0=2t,∴A0B=AB-AA0=12-2t,
∴A0N=
1
2
A0B=6-t,NK=A0N•tan30°=
3
3
(6-t).
∴S=S四边形D0E0KN=S△A0D0E0-S△A0NK=
1
2
×3×3
3
-
1
2
×(6-t)×
3
3
(6-t)=
3
6
t2+2
3
t-
3
3
2

(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.

∵AA0=2t,∴A0B=AB-AA0=12-2t=D0C,
∴A0N=
1
2
A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=
3
(6-t);
易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,
S=S梯形BND0I-S△BKJ=
1
2
[t+(2t-6)]•
3
(6-t)-
1
2
•(12-2t)•
3
3
(12-2t)=
13
3
6
t2+20
3
t-42
3

综上所述,S与t之间的函数关系式为:
S=
3
2
t2(0≤t≤1.5)
3
6
t2+2
3
t−
3
3
2
(1.5<t≤4.5)
13
3
6
t2+20
3
t−42
3
(4.5<t≤6)