早教吧作业答案频道 -->其他-->
复变函数中f(z)=u(x,y)+iv(x,y)化成f(z)的形式中用的设零法是怎么证明的已知f(z)=x(1+1/x^2+y^2)+iy(1-1/x^2+y^2),将其写成z=x+iy的解析式。解:用设零法因为由计算可得原函数解析,所以设y=0带入原
题目详情
复变函数中f(z)=u(x,y)+iv(x,y)化成f(z)的形式中用的设零法是怎么证明的
已知f(z)=x(1+1/x^2+y^2)+iy(1-1/x^2+y^2),将其写成z=x+iy的解析式。
解:用设零法
因为由计算可得原函数解析,所以设y=0带入原式可得
f(z)=x(1+1/x^2)=x+1/x
所以代回f(z)有f(z)=z+1/z
用设y=0最后为什么能把x换成z,这种方法的证明过程是什么呢
已知f(z)=x(1+1/x^2+y^2)+iy(1-1/x^2+y^2),将其写成z=x+iy的解析式。
解:用设零法
因为由计算可得原函数解析,所以设y=0带入原式可得
f(z)=x(1+1/x^2)=x+1/x
所以代回f(z)有f(z)=z+1/z
用设y=0最后为什么能把x换成z,这种方法的证明过程是什么呢
▼优质解答
答案和解析
其实原理很简单,因为z=x+iy,当令y=0,那么就有z=x,所以只要把x=z,y=0带入函数表达式就得到的f(z),前提条件是函数要解析
看了复变函数中f(z)=u(x,y...的网友还看了以下: