早教吧作业答案频道 -->数学-->
1/(x-y)(x-z)+1/(y-z)(y-x)+1/(z-x)(z-y)
题目详情
1/(x-y)(x-z)+1/(y-z)(y-x)+1/(z-x)(z-y)
▼优质解答
答案和解析
1/(x-y)(x-z)+1/(y-z)(y-x)+1/(z-x)(z-y)
=1/(x-y)(x-z)-1/(y-z)(x-y)+1/(x-z)(y-z)
=[(y-z)-(x-z)+(x-y)]/(x-y)(x-z)(y-z)
=0/(x-y)(x-z)(y-z)
=0
=1/(x-y)(x-z)-1/(y-z)(x-y)+1/(x-z)(y-z)
=[(y-z)-(x-z)+(x-y)]/(x-y)(x-z)(y-z)
=0/(x-y)(x-z)(y-z)
=0
看了1/(x-y)(x-z)+1/...的网友还看了以下: