早教吧作业答案频道 -->数学-->
如何得到函数的等价无穷小?比如e^(1/2n)-1和1/(2n),(n趋)已知前者如何得到后者?如题,这样
题目详情
如何得到函数的等价无穷小?比如e^(1/2n)-1 和1/(2n),(n趋)已知前者如何得到后者?
如题,这样
如题,这样
▼优质解答
答案和解析
举个例子,比如我们要求cosx -1的等价无穷小(x趋于0),则我们可以则样做:不断求导,直至其取极限不为0.
(cosx -1)' = -sinx 显然,此时x取极限还是为0,继续求导
(-sinx)' = -cosx,此时极限为-1
我们经过两次求导得到非0极限,所以等价无穷小应该是x的2次项式,即ax^2,a为待定系数,我们需要ax^2求导两次得到的数与-1相等,所以得到a=-1/2.
故等价无穷小为-x^2/2.
其实,上面的过程就是罗比达法则的逆应用.只要掌握了这个方法,就不难找出等价无穷小了.
(cosx -1)' = -sinx 显然,此时x取极限还是为0,继续求导
(-sinx)' = -cosx,此时极限为-1
我们经过两次求导得到非0极限,所以等价无穷小应该是x的2次项式,即ax^2,a为待定系数,我们需要ax^2求导两次得到的数与-1相等,所以得到a=-1/2.
故等价无穷小为-x^2/2.
其实,上面的过程就是罗比达法则的逆应用.只要掌握了这个方法,就不难找出等价无穷小了.
看了如何得到函数的等价无穷小?比如...的网友还看了以下: