早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ACDE、BAFG是以△ABC的边AC、AB为边向△ABC外所作的正方形.求证:(1)EB=FC.(2)EB⊥FC.

题目详情
如图,四边形ACDE、BAFG是以△ABC的边AC、AB为边向△ABC外所作的正方形.
求证:(1)EB=FC.
(2)EB⊥FC.
▼优质解答
答案和解析
证明:(1)∵四边形ACDE、BAFG都是正方形,
∴AB=AF,AC=AE,∠BAF=∠CAE=90°,
∴∠BAF+∠BAC=∠CAE+∠BAC,
即∠BAE=∠CAF,
在△ABE和△AFC中,
AB=AF
∠BAE=∠CAF
AC=AE

∴△ABE≌△AFC(SAS),
∴EB=FC;
(2)∵△ABE≌△AFC,
∴∠AEB=∠ACF,
连接CE,设EB、CF相交于O,
则∠OEC+∠OCE=∠OEC+∠ACE+∠BEA=∠ACE+∠AEC=90°,
在△OCE中,∠COE=180°-(∠OEC+∠OCE)=180°-90°=90°,
∴EB⊥FC.