早教吧作业答案频道 -->数学-->
求下通项为下式的数列极限Lim((-2)n+3n)/((-2)n+1+3n+1)n→∞=Lim(1+(-2/3)n)/(1+(-2/3)n+1)*(1/3)n→∞=1/3
题目详情
求下通项为下式的数列极限
Lim ((-2)n+3n)/((-2)n+1+3n+1)n→∞= Lim (1+(-2/3)n)/(1+(-2/3)n+1)*(1/3)n→∞=1/3
Lim ((-2)n+3n)/((-2)n+1+3n+1)n→∞= Lim (1+(-2/3)n)/(1+(-2/3)n+1)*(1/3)n→∞=1/3
▼优质解答
答案和解析
你好!
lim(n→+∞) [(-2)^n + 3^n ] / [ (-2)^(n+1) + 3^(n+1) ]
= lim(n→+∞) [ (-2/3)^n +1 ] / [ -2*(-2/3)^n + 3 ]
= 1/3
lim(n→+∞) [(-2)^n + 3^n ] / [ (-2)^(n+1) + 3^(n+1) ]
= lim(n→+∞) [ (-2/3)^n +1 ] / [ -2*(-2/3)^n + 3 ]
= 1/3
看了求下通项为下式的数列极限Lim...的网友还看了以下: