早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数极限问题设极限limx→1f(x)存在,且f(x)=(x^2+4x-5)/(x^2-1)+sin(2-2x)/(x-1)乘以limx→1f(x),求limx→1f(x)(sin(2-2x)/(x-1))乘以limx→1f(x)

题目详情
函数极限问题
设极限lim x→1 f(x)存在,且f(x)=(x^2+4x-5)/(x^2-1)+sin(2-2x)/(x-1)乘以limx→1 f(x),求lim x→1 f(x)
(sin(2-2x)/(x-1))乘以limx→1 f(x)
▼优质解答
答案和解析
记lim[x→1] f(x)=a
f(x)=(x²+4x-5)/(x²-1)+asin(2-2x)/(x-1)
两边取极限得:
lim[x→1] f(x)=lim[x→1] [(x²+4x-5)/(x²-1)+asin(2-2x)/(x-1)]
=lim[x→1] [(x-1)(x+5)/(x²-1)+a(2-2x)/(x-1)]
=lim[x→1] [(x+5)/(x+1)-2a]
=3-2a
则:a=3-2a,解得:a=1
因此:lim[x→1] f(x)=1
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
看了函数极限问题设极限limx→1...的网友还看了以下: