早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2x-1)/根号下(9x^2-4)的不定积分

题目详情
(2x-1)/根号下(9x^2-4)的不定积分
▼优质解答
答案和解析
∫[(2x-1)/√(9x^2-4)]dx
=∫[2x/√(9x^2-4)]dx-∫[1/√(9x^2-4)]dx
=∫[1/√(9x^2-4)]d(x^2)-(1/3)∫[1/√(x^2-4/9)]dx
=(1/3)∫[1/√(x^2-4/9)]d(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/3)√(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/9)√(9x^2-4)-(1/3)∫[1/√(x^2-4/9)]dx.
令x=(2/3)/sinu,则:
cosu=√[1-(sinu)^2]=√[1-(4/9)/x^2]=[1/(3x)]√(9x^2-4),
dx=-(2/3)[cosu/(sinu)^2]du.
∴∫[(2x-1)/√(9x^2-4)]dx
=(2/9)√(9x^2-4)+(2/9)∫(sinu/cosu)[cosu/(sinu)^2]du
=(2/9)√(9x^2-4)+(2/9)∫[sinu/(sinu)^2]du
=(2/9)√(9x^2-4)-(2/9)∫{1/[1-(cosu)^2]}d(cosu)
=(2/9)√(9x^2-4)-(1/9)[1/(1+cosu)+1/(1-cosu)]d(cosu)
=(2/9)√(9x^2-4)+(1/9)ln(1-cosu)-(1/9)ln(1+cosu)+C
=(2/9)√(9x^2-4)+(1/9)ln[(1-cosu)^2/(sinu)^2]+C
=(2/9)√(9x^2-4)+(2/9)ln{1-[1/(3x)]√(9x^2-4)}/[(2/3)/x]+C
=(2/9)√(9x^2-4)+(2/9)ln[3x-√(9x^2-4)]+C.