早教吧作业答案频道 -->数学-->
(2x-1)/根号下(9x^2-4)的不定积分
题目详情
(2x-1)/根号下(9x^2-4)的不定积分
▼优质解答
答案和解析
∫[(2x-1)/√(9x^2-4)]dx
=∫[2x/√(9x^2-4)]dx-∫[1/√(9x^2-4)]dx
=∫[1/√(9x^2-4)]d(x^2)-(1/3)∫[1/√(x^2-4/9)]dx
=(1/3)∫[1/√(x^2-4/9)]d(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/3)√(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/9)√(9x^2-4)-(1/3)∫[1/√(x^2-4/9)]dx.
令x=(2/3)/sinu,则:
cosu=√[1-(sinu)^2]=√[1-(4/9)/x^2]=[1/(3x)]√(9x^2-4),
dx=-(2/3)[cosu/(sinu)^2]du.
∴∫[(2x-1)/√(9x^2-4)]dx
=(2/9)√(9x^2-4)+(2/9)∫(sinu/cosu)[cosu/(sinu)^2]du
=(2/9)√(9x^2-4)+(2/9)∫[sinu/(sinu)^2]du
=(2/9)√(9x^2-4)-(2/9)∫{1/[1-(cosu)^2]}d(cosu)
=(2/9)√(9x^2-4)-(1/9)[1/(1+cosu)+1/(1-cosu)]d(cosu)
=(2/9)√(9x^2-4)+(1/9)ln(1-cosu)-(1/9)ln(1+cosu)+C
=(2/9)√(9x^2-4)+(1/9)ln[(1-cosu)^2/(sinu)^2]+C
=(2/9)√(9x^2-4)+(2/9)ln{1-[1/(3x)]√(9x^2-4)}/[(2/3)/x]+C
=(2/9)√(9x^2-4)+(2/9)ln[3x-√(9x^2-4)]+C.
=∫[2x/√(9x^2-4)]dx-∫[1/√(9x^2-4)]dx
=∫[1/√(9x^2-4)]d(x^2)-(1/3)∫[1/√(x^2-4/9)]dx
=(1/3)∫[1/√(x^2-4/9)]d(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/3)√(x^2-4/9)-(1/3)∫[1/√(x^2-4/9)]dx
=(2/9)√(9x^2-4)-(1/3)∫[1/√(x^2-4/9)]dx.
令x=(2/3)/sinu,则:
cosu=√[1-(sinu)^2]=√[1-(4/9)/x^2]=[1/(3x)]√(9x^2-4),
dx=-(2/3)[cosu/(sinu)^2]du.
∴∫[(2x-1)/√(9x^2-4)]dx
=(2/9)√(9x^2-4)+(2/9)∫(sinu/cosu)[cosu/(sinu)^2]du
=(2/9)√(9x^2-4)+(2/9)∫[sinu/(sinu)^2]du
=(2/9)√(9x^2-4)-(2/9)∫{1/[1-(cosu)^2]}d(cosu)
=(2/9)√(9x^2-4)-(1/9)[1/(1+cosu)+1/(1-cosu)]d(cosu)
=(2/9)√(9x^2-4)+(1/9)ln(1-cosu)-(1/9)ln(1+cosu)+C
=(2/9)√(9x^2-4)+(1/9)ln[(1-cosu)^2/(sinu)^2]+C
=(2/9)√(9x^2-4)+(2/9)ln{1-[1/(3x)]√(9x^2-4)}/[(2/3)/x]+C
=(2/9)√(9x^2-4)+(2/9)ln[3x-√(9x^2-4)]+C.
看了(2x-1)/根号下(9x^2...的网友还看了以下:
小芳同学关于解一道X的一元一次方程五分之4x+?减去三分之2+2X=1,知道解时3?是多少? 2020-04-09 …
列方程解答下面两题.(1)一个周长是25.8米的长方形,长是9.6米,宽是多少米?(2)南京地铁一 2020-04-11 …
有8支雪糕,甲拿走它的2分之1,已拿走剩下部分的2分之1,丙又拿走剩下部分的2分之1,那么甲乙丙拿 2020-05-13 …
考研高数 关于积分的2个问题我要问的是图中63和6563式子我能够列出来,但是吧,65我的思路是力 2020-05-13 …
分式x/xy-y,y/xy+x的最简公分母1.分式x/xy-y,y/xy+x的最简公分母 2.当_ 2020-05-16 …
当代中国社会问题透视作业1、我国留守儿童有多少人?(2.00分)A.5000万B.6000万C.7 2020-05-17 …
约分x^2-2x+1/1-x^2,刚才打错了、、、、 2020-05-20 …
x分之2+2x分之1=1大家帮忙做一下,谢谢!~~ 2020-05-20 …
求不定积分5x^2+2x-3/3x^2dx 2020-05-21 …
把一个圆柱体削成一个最大的圆锥体,圆锥的体积是削去部分的2分之1.判断对错 2020-05-22 …