早教吧作业答案频道 -->数学-->
x^4+x^3+4/9x^2+x+1(2a+5)(a^2-9)(2a-7)-91
题目详情
x^4+x^3+4/9x^2+x+1
(2a+5)(a^2-9)(2a-7)-91
▼优质解答
答案和解析
x^4+x^3+4/9x^2+x+1
先除以x^2
x^2+x+9/4+1/x+1/x^2
设x+1/x=a
a^2-2+9/4+a=(a+1/2)^2=(x+1/x+1/2)^2
所以原式=(x^2+1/2x+1)^2
(2a+5)(a^2-9)(2a-7)-91
= (2a+5)(a-3)(a+3)(2a-7)-91
= [(2a+5)(a-3)][(a+3)(2a-7)]-91
= (2a^2-a-15)(2a^2-a-21)-91
= (2a^2-a)^2-36(2a^2-a)+224
= (2a^2-a-8)(2a^2-a-28)
= (2a^2-a-8)(2a+7)(a-4)
先除以x^2
x^2+x+9/4+1/x+1/x^2
设x+1/x=a
a^2-2+9/4+a=(a+1/2)^2=(x+1/x+1/2)^2
所以原式=(x^2+1/2x+1)^2
(2a+5)(a^2-9)(2a-7)-91
= (2a+5)(a-3)(a+3)(2a-7)-91
= [(2a+5)(a-3)][(a+3)(2a-7)]-91
= (2a^2-a-15)(2a^2-a-21)-91
= (2a^2-a)^2-36(2a^2-a)+224
= (2a^2-a-8)(2a^2-a-28)
= (2a^2-a-8)(2a+7)(a-4)
看了x^4+x^3+4/9x^2+...的网友还看了以下: