早教吧作业答案频道 -->数学-->
已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点是F2(2,0)且b=根号3a.(1)求双曲线C的方程(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交雨A,B不同的两点时,求
题目详情
已知双曲线C:x^2/a^2-y^2/b^2=1 (a>0,b>0)的一个焦点是F2(2,0)且b=根号3a.(1)求双曲线C的方程 (2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交雨A,B不同的两点时,求实数m的取值范围:并证明AB重点M在曲线3(x-1)^2-y^2=3上(3)设(2)中直线l与双曲线C的右支相交于A,B两点.问是否有实数m,使角AOB为锐角?若存在,求出m的范围,若不存在,说明理由
▼优质解答
答案和解析
(1)c=2c^2=a^2+b^2
∴4=a^2+3a^2∴a^2=1,b^2=3,∴双曲线为 x^2-y^2/3=1.
(2)l:m(x-2)+y=0由 {y=-mx+2m
x^2-y^2/3=1
得(3-m^2)x^2+4m^2x-4m^2-3=0
由△>0得4m^4+(3-m^2)(4m^2+3)>0
12m^2+9-3m^2>0即m^2+1>0恒成立
又{x1+x2>0
x1•x2>0
4m^2/(m^2-3)>0
(4m^2+3)/(m^2-3)>0
∴m^2>3∴ m∈(-∞,-根号3)∪(根号3,+∞)
设A(x1,y1),B(x2,y2),
则 (x1+x2)/2=(2m^2/m^2-3)(y1+y2)/2=-2m^3/(m^2-3)+2m=-6m(m^2-3)
∴ AB中点M(2m2m2-3,-6mm2-3)
∵ 3[(2m^2)/(m^2-3)-1]^2-36m^2/[(m^2-3)^2]=3
∴M在曲线3(x-1)^2-y^2=3上.
(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA→•OB→>0
∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m^2x1x2-2m^2(x1+x2)+4m^2
∴(1+m^2)x1x2-2m^2(x1+x2)+4m^2>0
∴(1+m^2)(4m^2+3)-8m^4+4m^2(m^2-3)>0即7m^2+3-12m^2>0
∴ m^2<35,与m^2>3矛盾
∴不存在
∴4=a^2+3a^2∴a^2=1,b^2=3,∴双曲线为 x^2-y^2/3=1.
(2)l:m(x-2)+y=0由 {y=-mx+2m
x^2-y^2/3=1
得(3-m^2)x^2+4m^2x-4m^2-3=0
由△>0得4m^4+(3-m^2)(4m^2+3)>0
12m^2+9-3m^2>0即m^2+1>0恒成立
又{x1+x2>0
x1•x2>0
4m^2/(m^2-3)>0
(4m^2+3)/(m^2-3)>0
∴m^2>3∴ m∈(-∞,-根号3)∪(根号3,+∞)
设A(x1,y1),B(x2,y2),
则 (x1+x2)/2=(2m^2/m^2-3)(y1+y2)/2=-2m^3/(m^2-3)+2m=-6m(m^2-3)
∴ AB中点M(2m2m2-3,-6mm2-3)
∵ 3[(2m^2)/(m^2-3)-1]^2-36m^2/[(m^2-3)^2]=3
∴M在曲线3(x-1)^2-y^2=3上.
(3)A(x1,y1),B(x2,y2),设存在实数m,使∠AOB为锐角,则OA→•OB→>0
∴x1x2+y1y2>0
因为y1y2=(-mx1+2m)(-mx2+2m)=m^2x1x2-2m^2(x1+x2)+4m^2
∴(1+m^2)x1x2-2m^2(x1+x2)+4m^2>0
∴(1+m^2)(4m^2+3)-8m^4+4m^2(m^2-3)>0即7m^2+3-12m^2>0
∴ m^2<35,与m^2>3矛盾
∴不存在
看了已知双曲线C:x^2/a^2-...的网友还看了以下:
已知当x不为0时,f(x)=sinx/x,当x=0时,f(x)=a,当a为何值时,f(x)在x=0 2020-05-17 …
当x,y为正数,且x^2+y^2/2=1,则x√1+y^2的最大值是用均值不等式 2020-07-30 …
函数f(x)=xsinx()A.在(-∞,+∞)内有界B.当x→∞时为无穷大C.在(-∞,+∞)内 2020-07-31 …
二元一次方程3x+2y=6,当x,y为有理数时,当x,y为整数时,当y为不超过10的自然数,x为整 2020-08-02 …
二元一次方程3x+2y=6,当为有理数死、时,有_个解;当x.y为整数时;有_个解;当y为不超过1 2020-08-02 …
求教证明题一,求证:当x为实数时,有[x]+[x+1/2]=[2x]([]为取整符号)二,求证:当x 2020-10-30 …
已知直角坐标系中有一动点M(x,Y)(1)当X不变时,Y可去不同的值时,动点M的位子发生怎样的变化? 2020-11-24 …
关于不定积分∫f(x)dx前面的X为什么要和后面的X一致时才可以解题?例如当x变为2x时,后面的dx 2020-12-13 …
1.试说明:无论X,Y取何值,代数式4X的平方+Y的平方-4X+6Y+11的值总是正数,你能求出当X 2020-12-23 …
请教数学高手问题怎么证明这个函数是可积分的f(x)=0当x不为有理数f(x)=1/q当x=p/qp, 2021-01-20 …