早教吧 育儿知识 作业答案 考试题库 百科 知识分享

x,y,z>0x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2求证x/(1+x^2)+y/(1+y^2)+z/(1+z^2)最大值我做了好久了,求帮帮忙x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2(a)所以:1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1(b)为是么?

题目详情
x,y,z>0 x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2求证x/(1+x^2)+y/(1+y^2)+z/(1+z^2)最大值
我做了好久了,求帮帮忙
x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2 (a)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
为是么?
▼优质解答
答案和解析
x^2/(1+x^2)+y^2/(1+y^2)+z^2/(1+z^2)=2 (a)
所以:
1/(1+x^2)+1/(1+y^2)+1/(1+z^2)=1 (b)
(a)+(b)*2,得到:
(x^2+2)/(1+x^2)+(y^2+2)/(1+y^2)+(z^2+2)/(1+z^2)=4
x^2+2>=2*(2)^(1/2)*x,同理y,z.所以:
4>=2*(2)^(1/2)*[x/(1+x^2)+y/(1+y^2)+z/(1+z^2)]
所以:
x/(1+x^2)+y/(1+y^2)+z/(1+z^2)
看了x,y,z>0x^2/(1+x...的网友还看了以下: