早教吧作业答案频道 -->数学-->
请进,如果(a+b+c)的平方=3ab+3bc+3ca,求证a=b=c.请附上详细答案以作参考.
题目详情
请进,
如果(a+b+c)的平方=3ab+3bc+3ca,求证 a=b=c.
请附上详细答案以作参考.
如果(a+b+c)的平方=3ab+3bc+3ca,求证 a=b=c.
请附上详细答案以作参考.
▼优质解答
答案和解析
(a+b+c)^2=3ab+3bc+3ca
a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ca=0
a^2+b^2+c^2-ab-bc-ac=0
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
a^2-2ab+b^2+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
(a-b)^2+(a-c)^2+(b-c)^2=0
平方都大于等于0
相加为0则各项均为0
∴a-b=0,a-c=0,b-c=0
∴a=b,a=c,b=c
∴a=b=c
即三角形为等边三角形
即啊²+b²+c²+2ab+2bc+2ac=3ab+3bc+3ac
a²+b²+c²-ab-bc-ac=0
两边乘2
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立.
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
太简单了
a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ca=0
a^2+b^2+c^2-ab-bc-ac=0
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
a^2-2ab+b^2+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
(a-b)^2+(a-c)^2+(b-c)^2=0
平方都大于等于0
相加为0则各项均为0
∴a-b=0,a-c=0,b-c=0
∴a=b,a=c,b=c
∴a=b=c
即三角形为等边三角形
即啊²+b²+c²+2ab+2bc+2ac=3ab+3bc+3ac
a²+b²+c²-ab-bc-ac=0
两边乘2
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立.
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
太简单了
看了请进,如果(a+b+c)的平方...的网友还看了以下:
若a>b,则不等式中一定成立的是( ).A.ac>bc B.ac的平方>bc的平方 C.a请写出答 2020-05-16 …
将△ABD平移,使D沿BD延长线至C得到A′B′D′,A′B′交于AC于E,AD平行∠BAC.1. 2020-05-19 …
请把下面的数学表达式改为vb表达式请把下面的数学表达式改成vd表达式:|a的2平方+b的3平方|→ 2020-06-09 …
bc^2+ca^2+ab^2-ac^2-cb^2-ba^2怎么化成(a-b)(b-c)(c-a)请 2020-06-12 …
关于椭圆方程的推导~关于推导x^2/a^2+y^2/b^=1时前一步,要令b^2=a^2-c^2. 2020-06-17 …
又来一道数学题!急啊!已知x/a(a分之x)+y/b+z/c=1,a/x+b/y+c/z=0,求x 2020-07-03 …
已知a,b,c,为三条不重合的直线,α,β,γ为三个不重合的平面,先给出个命题1.a平行c,b平行 2020-07-09 …
双曲线C:a平方分之x平方-b平方分之y平方=1(a>0,b>0)的离心率为2,一条准线方程为x= 2020-07-31 …
如图,在平面直角坐标系中,已知A(a,0),B(0,b)两点,且a、b满足(3a-2b)2+|a-b 2020-11-01 …
三角形边长公式:设边长为ABC,C>B>A,B>或=A我知道等边直角三角形公式是(根号2XA=C)直 2020-11-07 …