早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知正数x,y,z满足x^2+4y^2+9z^2=3,求25/(4yz+3xz)+36/(2xy+3xz)+49/(8yz+2xy)的最小值

题目详情
已知正数x,y,z满足x^2+4y^2+9z^2=3,求25/(4yz+3xz)+36/(2xy+3xz)+49/(8yz+2xy)的最小值
▼优质解答
答案和解析
根据柯西不等式(a^2+b^2+c^2)(p^2+q^2+r^2)>=(ap+bq+cr)^2有
[25/(4yz+3xz)+36/(2xy+3xz)+49/(8yz+2xy)]*[(4yz+3xz)+(2xy+3xz)+(8yz+2xy)]
>=(5+6+7)^2
=18^2
因为 (x-2y)^2+(2y-3z)^2+(3z-x)^2=2(x^2+4y^2+9z^2)-4xy-12yz-6zx)>=0
所以 (12yz+6xz+4xy)<=2(x^2+4y^2+9z^2)=2*3=6
而 (4yz+3xz)+(2xy+3xz)+(8yz+2xy)
=12yz+6xz+4xy
故 25/(4yz+3xy)+36/(2xy+3xz)+49/(8yz+2xy)>=18^2/6=54