早教吧作业答案频道 -->其他-->
已知函数f(x)的定义域为[0,1],且同时满足:(1)对任意x∈[0,1],总有f(x)≥2;(2)f(1)=3(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.(I)求f(0)的值;(II
题目详情
已知函数f(x)的定义域为[0,1],且同时满足:
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=−
(an−3),n∈N*.求证:f(a1)+f(a2)+f(a3)+…+f(an)≤
+2n−
.
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=−
1 |
2 |
3 |
2 |
1 |
2×3n−1 |
▼优质解答
答案和解析
(I)令x1=x2=0,由f(x1+x2)≥f(x1)+f(x2)-2,则f(0)≥2f(0)-2,∴f(0)≤2.
由对任意x∈[0,1],总有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)对任意x1,x2∈[0,1]且x1<x2,则0<x2-x1≤1,∴f(x2-x1)≥2,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-2≥f(x1),
∴fmax(x)=f(1)=3;
(III)∵Sn=−
(an−3)(n∈N*)①,
∴Sn−1=−
(an−1−3)(n≥2)②,
①-②得:an=
an−1(n≥2),
由Sn=−
(an−3),得:a1=−
(a1−3),解得a1=1.
∵a1=1≠0,∴
=
(n≥2),
∴an=a1qn−1=
.
∴f(an)=f(
)=f(
+
+
)≥f(
)+f(
)−2≥3f(
)−4
∴f(
)≤
f(
)+
,即f(an+1)≤
f(an)+
.
所以f(an)≤
f(an−1)+
≤
[
f(an−2)+
]+
≤…≤
f(a1)+
+
+…+
=
f(1)+
+
+…+
=
+4×
=
+2.
故f(an)≤2+
∴f(a1)+f(a2)+…+f(an)≤2n+
=2n+
−
.
即原不等式式成立.
由对任意x∈[0,1],总有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)对任意x1,x2∈[0,1]且x1<x2,则0<x2-x1≤1,∴f(x2-x1)≥2,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-2≥f(x1),
∴fmax(x)=f(1)=3;
(III)∵Sn=−
1 |
2 |
∴Sn−1=−
1 |
2 |
①-②得:an=
1 |
3 |
由Sn=−
1 |
2 |
1 |
2 |
∵a1=1≠0,∴
an |
an−1 |
1 |
3 |
∴an=a1qn−1=
1 |
3n−1 |
∴f(an)=f(
1 |
3n−1 |
1 |
3n |
1 |
3n |
1 |
3n |
2 |
3n |
1 |
3n |
1 |
3n |
∴f(
1 |
3n |
1 |
3 |
1 |
3n−1 |
4 |
3 |
1 |
3 |
4 |
3 |
所以f(an)≤
1 |
3 |
4 |
3 |
1 |
3 |
1 |
3 |
4 |
3 |
4 |
3 |
≤…≤
1 |
3n−1 |
4 |
3n−1 |
4 |
3n−2 |
4 |
3 |
=
1 |
3n−1 |
4 |
3n−1 |
4 |
3n−2 |
4 |
3 |
=
3 |
3n−1 |
| ||||
1−
|
1 |
3n−1 |
故f(an)≤2+
1 |
3n−1 |
∴f(a1)+f(a2)+…+f(an)≤2n+
1−(
| ||
1−
|
3 |
2 |
1 |
2×3n−1 |
即原不等式式成立.
看了已知函数f(x)的定义域为[0...的网友还看了以下:
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,-π2<φ<π2),其部分图象 2020-04-12 …
已知向量a=(x2-3,1),b=(x,-y)(其中实数x和y不同时为零),当|x|<2时,有a⊥ 2020-05-16 …
设函数f(x)=e^(x-1)+a/x(I)若函数f(x)在x=1处有极值,且函数g(x)=f(x 2020-06-06 …
已知函数f(x)=x2+(k-2)x+2k-1(1)若f(1)=16,函数g(x)是R上的奇函数, 2020-06-09 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
已知函数f(x)=xeax+lnx-e(a∈R).(I)当a=1时,求函数y=f(x)在点(1,f 2020-07-31 …
已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒 2020-08-03 …
f(x)=2ax^3+(b−2a)x^2−(a+b−1)x+a−1i):求证,当|b|>根号2,a+ 2020-11-01 …
已知函数f(x)=log2(x+1),当点(x,y)是y=f(x)的图象上的点时,点(x3,y2)是 2020-12-12 …
求分别满足下列条件的函数f(x)的解析式I)f(x)+2f(1/x)=x(II)f(x)-xf(-x 2021-01-07 …