早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)的定义域为[0,1],且同时满足:(1)对任意x∈[0,1],总有f(x)≥2;(2)f(1)=3(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.(I)求f(0)的值;(II

题目详情
已知函数f(x)的定义域为[0,1],且同时满足:
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=−
1
2
(an−3),n∈N*.求证:f(a1)+f(a2)+f(a3)+…+f(an)≤
3
2
+2n−
1
3n−1
▼优质解答
答案和解析
(I)令x1=x2=0,由f(x1+x2)≥f(x1)+f(x2)-2,则f(0)≥2f(0)-2,∴f(0)≤2.
由对任意x∈[0,1],总有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)对任意x1,x2∈[0,1]且x1<x2,则0<x2-x1≤1,∴f(x2-x1)≥2,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-2≥f(x1),
∴fmax(x)=f(1)=3;
(III)∵Sn=−
1
2
(an−3)(n∈N*)①,
Sn−1=−
1
2
(an−1−3)(n≥2)②,
①-②得:an=
1
3
an−1(n≥2),
Sn=−
1
2
(an−3),得:a1=−
1
2
(a1−3),解得a1=1.
∵a1=1≠0,∴
an
an−1
1
3
(n≥2),
an=a1qn−1=
1
3n−1

f(an)=f(
1
3n−1
)=f(
1
3n
+
1
3n
+
1
3n
)≥f(
2
3n
)+f(
1
3n
)−2≥3f(
1
3n
)−4
f(
1
3n
)≤
1
3
f(
1
3n−1
)+
4
3
,即f(an+1)≤
1
3
f(an)+
4
3

所以f(an)≤
1
3
f(an−1)+
4
3
1
3
[
1
3
f(an−2)+
4
3
]+
4
3

≤…≤
1
3n−1
f(a1)+
4
3n−1
+
4
3n−2
+…+
4
3

=
1
3n−1
f(1)+
4
3n−1
+
4
3n−2
+…+
4
3

=
3
3n−1
+4×
1
3
(1−
1
3n−1
)
1−
1
3
=
1
3n−1
+2.
f(an)≤2+
1
3n−1

f(a1)+f(a2)+…+f(an)≤2n+
1−(
1
3
)n
1−
1
3
=2n+
3
2
1
2×3n−1

即原不等式式成立.