早教吧作业答案频道 -->数学-->
已知fx满足f1=1/4,4fx*fy=f(x+y)+f(x-y)(x,y属于R),则f(2010)=?已知fx满足f1=1/4,4fx*fy=f(x+y)+f(x-y)(x,y属于R),则f(2014)=?终于弄懂了。赋值法。回答地都好好,
题目详情
已知fx满足f1=1/4,4fx*fy=f(x+y)+f(x-y)(x,y属于R),则f(2010)=?
已知fx满足f1=1/4,4fx*fy=f(x+y)+f(x-y)(x,y属于R),则f(2014)=?
终于弄懂了。赋值法。回答地都好好,
已知fx满足f1=1/4,4fx*fy=f(x+y)+f(x-y)(x,y属于R),则f(2014)=?
终于弄懂了。赋值法。回答地都好好,
▼优质解答
答案和解析
通过迭代可知
x=1,y=0,f(0)=1/2,
f(1)=1/4;(已知)
x=1,y=1,f(2)=-1/4;
x=2,y=1,f(3)=-1/2;
x=3,y=1,f(4)=-1/4;
x=4,y=1,f(5)=1/4;
x=5,y=1,f(6)=1/2;
x=6,y=1,f(7)=1/4;
x=7,y=1,f(8)=-1/4,发现出现循环,周期是6.
2010/6=335……0,所以f(2010)=1/2;
2014/6=335……4,所以f(2014)=-1/4
x=1,y=0,f(0)=1/2,
f(1)=1/4;(已知)
x=1,y=1,f(2)=-1/4;
x=2,y=1,f(3)=-1/2;
x=3,y=1,f(4)=-1/4;
x=4,y=1,f(5)=1/4;
x=5,y=1,f(6)=1/2;
x=6,y=1,f(7)=1/4;
x=7,y=1,f(8)=-1/4,发现出现循环,周期是6.
2010/6=335……0,所以f(2010)=1/2;
2014/6=335……4,所以f(2014)=-1/4
看了已知fx满足f1=1/4,4f...的网友还看了以下: