早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等差数列{an}的各项均为正数,a1=1,且a3,a4+52,a11成等比数列.(1)求an的通项公式.(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn.

题目详情
已知等差数列{an}的各项均为正数,a1=1,且a3,a4+
5
2
,a11成等比数列.
(1)求an的通项公式.
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
▼优质解答
答案和解析
(1)记等差数列{an}的公差为d,由a1=1可知,
a3=1+2d,a4+
5
2
=1+3d+
5
2
=
7
2
+3d,a11=1+10d,
又∵a3,a4+
5
2
,a11成等比数列,
(
7
2
+3d)2=(1+2d)(1+10d),
整理得:11d2-9d-
45
4
=0,
解得:d=
3
2
或d=-
15
22
(舍),
∴数列{an}的是首项为1、公差为
3
2
的等差数列,
故其通项公式an=1+
3
2
(n-1)=
3
2
n-
1
2

(2)由(1)可知an=
3
2
n-
1
2
,a2n=3n-
1
2
,a2n+1-a2n-1=3,
∴Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=(a3-a1)a2+(a5-a3)a4+…+(a2n+1-a2n-1)a2n
=3(a2+a4+…+a2n
=3(a2+a4+…+a2n
=3•
n(3-
1
2
+3n-
1
2
)
2

=
9
2
n2+3n.