早教吧作业答案频道 -->数学-->
已知bn=(a*n+a*-n)/2,求证:对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n注:*表示次方,另外:1<a<2不好意思,还有一道,多谢啦!
题目详情
已知bn=(a*n+a*-n)/2,求证:对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n
注:*表示次方,另外:1<a<2
不好意思,还有一道,多谢啦!
注:*表示次方,另外:1<a<2
不好意思,还有一道,多谢啦!
▼优质解答
答案和解析
用数学归纳法
bn=(a^n+1/a^n)/2=√(a^2n+1/a^2n+2)/2n=1时,b1=a^n/2+1/2a^n<2+1/4=9/4<4-1/4=15/4
假设n=k时成立,则有:
b1+b2+b3+...+b2k<4^k-(1/2)^k
当n=k+1时,∵ 1b1+b2+b3+b2k+b2(k+1)<4^k-(1/2)^k+b2(k+1)
<4^k-(1/2)^k+4^(k+1)/2+(1/4)^(k+1)/2
=3*4^k-(1/2)^k+(1/4)^k/8
∵ 4^(k+1)-(1/2)^(k+1)-[3*4^k-(1/2)^k+(1/4)^k/8
=4^k+(1/2)^k/2-(1/4)^k/8>0
所以,b1+b2+b3+...+b2k+b2(k+1)<4^(k+1)-(1/2)^k+1)成立
据数学归纳法,n=k+1时,不等式亦成立
所以,对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n
得证.
bn=(a^n+1/a^n)/2=√(a^2n+1/a^2n+2)/2n=1时,b1=a^n/2+1/2a^n<2+1/4=9/4<4-1/4=15/4
假设n=k时成立,则有:
b1+b2+b3+...+b2k<4^k-(1/2)^k
当n=k+1时,∵ 1b1+b2+b3+b2k+b2(k+1)<4^k-(1/2)^k+b2(k+1)
<4^k-(1/2)^k+4^(k+1)/2+(1/4)^(k+1)/2
=3*4^k-(1/2)^k+(1/4)^k/8
∵ 4^(k+1)-(1/2)^(k+1)-[3*4^k-(1/2)^k+(1/4)^k/8
=4^k+(1/2)^k/2-(1/4)^k/8>0
所以,b1+b2+b3+...+b2k+b2(k+1)<4^(k+1)-(1/2)^k+1)成立
据数学归纳法,n=k+1时,不等式亦成立
所以,对任意正整数n,都有b1+b2+b3+……+b2n<4*n-(1/2)*n
得证.
看了已知bn=(a*n+a*-n)...的网友还看了以下:
一道概率统计题,不知道自己哪里想错了,求指导掷一枚骰子n次,求掷出最大点数为5的概率.我想的是先挑 2020-04-27 …
1,已知X的立方乘以X的A次方乘以X的2A+1等于X的31次方,求A的值是多少?2,若5X·(X的 2020-05-14 …
若2的M次方等于4的N+1次方,27的N次方等于3的M+1次方,求M+N的值?若3X加5Y=3,求 2020-05-14 …
数列错位相减叠加叠成a1=1an=a倍的n-1+2的n-1次方求通项ana1=1an=n/n+1* 2020-06-03 …
求通项公式和前n项和Sn1.已知数列an=1/n(n+1)(n+2)(n+3)求Sn2.求和2+2 2020-06-08 …
如果a≠b,且a,b是都不为0的常数求an次方+a的(n-1)次方*b+a的(n-2)次方*b²+ 2020-07-13 …
求极值(高数中的,不是高中的)1到n-1次求导均为零,问判断方法隐约记得好像是若n为奇数时,该点不 2020-07-31 …
不等式证明问题(1)xyz∈R,求证x4次方+y四次方+z四次方大于等于(x+y+z)xyz(2)1 2020-11-07 …
1.An中A1=1A(n+1)=An+(2n+1)求通项(要用叠加法)(第一个括号内的意思为A的n+ 2020-12-05 …
求解三道数列求和题(a-1)+(a的二次方-2)+…+(a的n次方-n)(2-3*5的-1次方)+( 2021-01-09 …