早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知Sn是公差为d≠0的等差数列{an}的前n项和,{bn}是公比为1-d的等比数列,若b1=a1,b2=a1a2,b3=a2a3,则limn→∞Sna2n=1313.

题目详情
已知Sn是公差为d≠0的等差数列{an}的前n项和,{bn}是公比为1-d的等比数列,若b1=a1,b2=a1a2,b3=a2a3,则
lim
n→∞
Sn
a
2
n
=
1
3
1
3
▼优质解答
答案和解析
由等比数列的定义可得
b2
b1
= 
b3
b2
=  1−d,即a2=
a3
a1
=1-d,∴a1+d=1-d,
∴a1=1-2d,a3=2d2-3d+1,∴2(1-d)=(1-2d )+(2d2-3d+1),∴d=
3
2
,a1=-2,
∴an=-2+(n-1)
3
2
=
3
2
n-
7
2
,an2=
9n2−42n+49
4

Sn =na1 +
n(n−1)d
2
=
3n2−11n
4

lim
n→∞
Sn
a
n
2
=
lim
n→∞
3n2−11n
9n2−42n+49
=
lim
n→∞
3−
11
n
9−
42
n
+
49
n2
=
3−0
9−0+0
=
1
3

答案为
1
3